Polyspace® Code Prover™

Reference

R2014b

MATLAB&SIMULINK

<} MathWorks

X B

How to Contact MathWorks

Latest news: www . mathworks .com

Sales and services: www.mathworks.com/sales_and_services
User community: www . mathworks .com/matlabcentral
Technical support: www . mathworks.com/support/contact_us
Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

Polyspace® Code Prover™ Reference

© COPYRIGHT 2013-2014 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used

or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and
govern the use, modification, reproduction, release, performance, display, and disclosure of the Program
and Documentation by the federal government (or other entity acquiring for or through the federal
government) and shall supersede any conflicting contractual terms or conditions. If this License fails

to meet the government's needs or is inconsistent in any respect with federal procurement law, the
government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See

www . mathworks . com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www . mathworks . com/patents for more information.

Revision History

September 2013 Online Only Revised for Version 9.0 (Release 2013b)
March 2014 Online Only Revised for Version 9.1 (Release 2014a)
October 2014 Online Only Revised for Version 9.2 (Release 2014b)

www.mathworks.com
www.mathworks.com/sales_and_services
www.mathworks.com/matlabcentral
www.mathworks.com/support/contact_us
http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Contents

Option Descriptions

1

Target operating system (C/C++) 1-4
SettIngS . .o e 14
Dependencies 1-5
Command-Line Information 1-5

Target processor type (C) 1-6
Settings: e 1-6
TIPS .« i e 1-7
Command-Line Information 1-7

Generic target options (C/C++) 1-9
Command-Line Options, 1-9

Dialect (C) 1-13
SettINgS . . . e 1-13
Dependency e 1-13
Limitations 1-14
Command-Line Information 1-15

Sfr type support (C) 1-16
Settings i e 1-16
Dependency 1-16
Command-Line Information 1-16

Division round down (C) 1-17
Settings i 1-17
Command-Line Information 1-17

Enum type definition (C) 1-18
Settings . . .o i e 1-18
Command-Line Information 1-18

iii

iv

Contents

Signed right shift (C)

Settings
Command-Line Information

Preprocessor definitions (C/C++)

Settings
Command-Line Information

Disabled preprocessor definitions (C/C++)

Settings
Command-Line Information

Code from DOS or Windows file system (C/C++)

Settings
Command-Line Information

Command/script to apply to preprocessed files (C/C++) . ..

Example Script

Command-Line Information

Continue with compile error (C/C++)

Settings
Command-Line Information

Include (C/CH+) e

Settings
Command-Line Information

Include folders (C/C++)

Settings
Command-Line Information

Multitasking (C/C++)

Settings

Dependencies

Command-Line Information

Entry points (C/C++)

Settings

Dependencies

Tipso
Command-Line Information

1-19
1-19
1-19

1-20
1-20
1-20

1-21
1-21
1-21

1-22
1-22
1-22

1-23
1-23
1-24

1-25
1-25
1-25

1-26
1-26
1-26

1-27
1-27
1-27

1-28
1-28
1-28
1-28

1-30
1-30
1-30
1-30
1-31

Critical section details (C/C++)

Settings ..o .ot e
Dependencies
TIPS ot e
Command-Line Information
Temporally exclusive tasks (C/C++)
Settings i e
Dependencies
Command-Line Information
Check MISRA C:2004
Settingso v e
TIPS ot e
Command-Line Information
Check MISRAACAGC
SEttINgS . . . e
TIPS e e
Command-Line Information
Check MISRA C:2012
Settingst e
TIPS .« e
Command-Line Information
Use generated code requirements (C)
Settings v e
Dependency
Command-Line Information
Check custom rules (C/C++)
Settings . . o vt e
Command-Line Information
Files and folders to ignore (C)
Settings ..ot e e
Dependencies
Command-Line Information
Effective boolean types (C)
Settingso i e
Dependencies

1-32
1-32
1-32
1-32
1-32

1-34
1-34
1-34
1-34

1-36
1-36
1-37
1-37

1-38
1-38
1-39
1-39

1-40
1-40
1-41
1-41

1-42
1-42
1-43
1-43

1-44
1-44
1-45

1-47
1-47
1-47
1-47

1-49
1-49
1-49

vi

Contents

Command-Line Information

Allowed pragmas (C)
Settings
Dependencies
Command-Line Information

Verify whole application (C/C++)

Settings
Command-Line Information

Verify module (C)

Settings
Command-Line Information

Variables to initialize (C) . ..
Settings
Dependencies
Command-Line Information

Initialization functions (C) ..
Settings
Tips i
Command-Line Information
Dependencies

Functions to call (C)
Settings
Dependencies
Tips ... oo
Command-Line Information

Verify files independently (C/C++)

Settings
Dependencies
Tips ..o oo
Command-Line Information

Common source files (C/C++)
Settings
Dependencies
Command-Line Information

1-49

1-51
1-51
1-51
1-51

1-52
1-52
1-52

1-53
1-53
1-53

1-55
1-55
1-55
1-55

1-57
1-57
1-57
1-57
1-57

1-59
1-59
1-59
1-59
1-60

1-61
1-61
1-61
1-61
1-61

1-63
1-63
1-63
1-63

Parameters (C) e 1-64

Settings ..o .ot e 1-64
Command-Line Information 1-64
Inputs (C) 1-66
Settings i e 1-66
Command-Line Information 1-66
Initialization functions (C) 1-68
SettINgsS . ..ot e 1-68
Command-Line Information 1-68
Step functions (C) 1-69
Settings . . .o i e 1-69
TIPS oot e 1-69
Command-Line Information 1-69
Termination functions (C) 1-71
Settings ..o oot e 1-71
Command-Line Information 1-71
Variable/function range setup (C/C++) 1-72
Settings i e 1-72
Command-Line Information 1-72
Ignore default initialization of global variables (C) 1-74
Settings . ..o i 1-74
TIPS oot e 1-74
Command-Line Information 1-74
No automatic stubbing (C/C++) 1-76
Settings . . oot e 1-76
TIPS oot e 1-76
Command-Line Information 1-76
Functions tostub (C) 1-78
Settings ..o .t 1-78
Command-Line Information 1-78
Respect types in fields (C/C++) 1-79
Settings i e 1-79
Command-Line Information 1-79

vii

viii

Contents

Respect types in global variables (C/C++)

Settings
Command-Line Information

Ignore float rounding (C/C++)
Settings
Command-Line Information

Green absolute address checks (C/C++)

Settings
Tips ... oo
Command-Line Information

Ignore overflowing computations on constants (C/C++) . ..

Settings
Tips ... oo
Command-Line Information

Allow negative operand for left shifts (C/C++)

Settings
Command-Line Information

Detect overflows (C/C++)
Settings
Tipso
Command-Line Information

Detect Overflows in Buffer Size Computation

Overflow computation mode (C/C++)

Settings
Command-Line Information

Enable pointer arithmetic across fields (C)

Settings
Tips ..o oo
Command-Line Information

Allow incomplete or partial allocation of structures (C) . .

Settings
Tipso
Command-Line Information

1-81
1-81
1-81

1-83
1-83
1-83

1-84
1-84
1-84
1-84

1-85
1-85
1-85
1-85

1-86
1-86
1-86

1-87
1-87
1-87
1-88

1-89

1-91
1-91
1-92

1-93
1-93
1-93
1-93

1-95
1-95
1-96
1-96

Permissive function pointercalls (C)

Settings
Tips .o oo

Command-Line Information

Detect uncalled functions (C/C++)

Settings

Command-Line Information

Precision level (C/C++)

Settings
Tips oo

Command-Line Information

Verification level (C)
Settings
Tips ..o
Dependency

Command-Line Information

Verification time limit (C/C++)

Settings

Command-Line Information

Retype variables of pointer types (C)

Settings

Command-Line Information

Retype symbols of integer types (C)

Settings

Dependencies

Tips ... oo

Command-Line Information

Sensitivity context (C/C++) . ..
Settings

Command-Line Information

Improve precision of interprocedural analysis (C/C++) . .

Settings
Tips ... oo

Command-Line Information

1-97
1-97
1-97
1-97

1-98
1-98
1-98

1-99
1-99
1-99
1-99

1-101
1-101
1-101
1-103
1-103

1-104
1-104
1-104

1-105
1-105
1-105

1-106
1-106
1-106
1-107
1-107

1-108
1-108
1-108

1-110
1-110
1-110
1-110

ix

X

Contents

Specific precision (C)

Settings
Command-Line Information

Optimize large static initializers (C)

Settings
Command-Line Information

Reduce task complexity (C) ..

Settings
Command-Line Information

Inline (C)
Settings
Tips ..o
Command-Line Information

Depth of verification inside structures (C/C++)

Settings
Command-Line Information

Generate report (C/C++)

Settings
Tips i
Command-Line Information

Report template (C/C++)

Settings

Dependencies

Command-Line Information

Output format (C/C++)

Settings
Tips ..o oo

Dependencies

Command-Line Information

Batch (C/C++)

Settings
Dependency
Command-Line Information

1-111
1-111
1-111

1-112
1-112
1-112

1-113
1-113
1-113

1-114
1-114
1-114
1-115

1-116
1-116
1-116

1-117
1-117
1-117
1-117

1-119
1-119
1-121
1-121

1-122
1-122
1-122
1-122
1-122

1-124
1-124
1-125
1-125

Add to results reposit
Settings
Dependency

ory (C/CH++)

Command-Line Information

Command/script to apply after the end of the code
verification (C/C++)

Settings

Command-Line Information

Automatic Orange Tester (C)

Settings
Tips

Command-Line Information

Number of automatic
Settings

Dependencies

tests (C)

Command-Line Information

Maximum loop iterations (C)

Settings

Dependencies

Command-Line Information

Maximum test time (C)

Settings

Dependencies

Command-Line Information

Other (C)
-extra-flags ..
-c-extra-flags
-cfe-extra-flag
-il-extra-flags

S 2

1-126
1-126
1-126
1-126

1-127
1-127
1-127

1-128
1-128
1-128
1-129

1-130
1-130
1-130
1-130

1-131
1-131
1-131
1-131

1-132
1-132
1-132
1-132

1-133
1-133
1-133
1-133
1-134

xi

xii

Option Descriptions specific to C++ Code

2|

Target processor type (C++) 2-3
Settings . . oot 2-3
TIPS .« e e 2-4
Command-Line Information 2-4
Dialect (C++) e 2-5
Settings . . oot e 2-5
Dependencies e 2-6
Limitations 2-6
Command-Line Information 2-8
C++11 Extensions (C++) 2-10
Settings ..ot e 2-10
Dependencies 2-10
Command-Line Information 2-10
Block char16/32_t types (C++) 2-11
Settings i e 2-11
Dependencies 2-11
Command-Line Information 2-11
Enum type definition (C++) 2-12
Settings v e 2-12
Command-Line Information 2-12
Pack alignment value (C++) 2-13
SettINgS . . . e 2-13
Dependencies 2-13
Command-Line Information 2-13
Ignore pragma pack directives (C++) 2-14
Settings ..ot e 2-14
Dependencies 2-14
Command-Line Information 2-14
Support managed extensions (C++) 2-15
Settings i e 2-15
Dependencies 2-15
Command-Line Information 2-15

Contents

Import folder (C++)
Settings

Dependencies
Command-Line Information

Management of scope of 'for loop' variable index (C++) . ..

Settings

Command-Line Information

Management of wchar_t (C++)

Settings

Command-Line Information

Set wchar_t to unsigned long (C++)

Settings

Command-Line Information

Set size_t to unsigned long (C++)

Settings

Command-Line Information

Ignore link errors (C++)
Settings

Command-Line Information

Check MISRA C++ rules
Settings

Command-Line Information

Check JSF C++ rules
Settings
Tips ..o i

Command-Line Information

Files and folders to ignore (C++)

Settings

Dependencies
Command-Line Information

Main entry point (C++)
Settings

Dependencies
Command-Line Information

2-16
2-16
2-16
2-16

2-17
2-17
2-17

2-18
2-18
2-18

2-19
2-19
2-19

2-20
2-20
2-20

2-21
2-21
2-21

2-22
2-22
2-23

2-24
2-24
2-25
2-25

2-26
2-26
2-26
2-26

2-28
2-28
2-28
2-28

xiii

xiv

Contents

Verify module (C++)

Settings

Command-Line Information

Class (C++)

Settings
Dependencies
Tips

Command-Line Information

Functions to call within the specified classes (C++)

Settings
Dependencies

Command-Line Information

Analyze class contents only (C++)

Settings
Dependencies
Tips

Command-Line Information

Skip member initialization check (C++)

Settings
Dependencies

Command-Line Information

Functions tocall (C++)

Settings
Dependencies
Tips

Command-Line Information

Variables to initialize (C++)

Settings
Dependencies

Command-Line Information

Initialization functions (C++)

Settings

Command-Line Information

Dependencies

2-30
2-30
2-30

2-32
2-32
2-32
2-32
2-32

2-34
2-34
2-35
2-35

2-37
2-37
2-37
2-37
2-37

2-39
2-39
2-39
2-39

2-40
2-40
2-40
2-40
2-41

2-42
2-42
2-42
2-42

2-44
2-44
2-44
2-44

Parameters (C++)

Settings

Command-Line Information

Inputs (C++)
Settings

Command-Line Information

Initialization functions (C++)

Settings

Command-Line Information

Step functions (C++)

Settings
Tips . ..

Command-Line Information

Termination
Settings
Tips ...

functions (C++)

Command-Line Information

No STL stubs (C++)

Settings
Tips . ..

Command-Line Information

Functions to stub (C++)

Settings

Command-Line Information

Tuning Precision and Scaling Parameters
Precision versus Time of Verification
Precision versus Code Size

Verification level (C++)

Settings
Tips . ..

Dependency
Command-Line Information

Inline (C++)
Settings

2-46
2-46
2-46

2-48
2-48
2-48

2-50
2-50
2-50

2-51
2-51
2-51
2-51

2-53
2-53
2-53
2-53

2-54
2-54
2-54
2-54

2-55
2-55
2-55

2-57
2-57
2-57

2-59
2-59
2-59
2-60
2-60

2-61
2-61

Xv

xvi

TIPS e e 2-61

Command-Line Information 2-61
Other (CH++) e e 2-62
-extra-flags 2-62
-cpp-extra-flags 2-62
Adl-extra-flags 2-62

Polyspace Analysis Options — Command Line Only

3

Check Reference

4

Approximations Used During Verification

S|

Why Polyspace Verification Uses Approximations 5-2
What is Static Verification 5-2
Exhaustiveness 5-3

Approximations Made by Polyspace Verification 5-4
Volatile Variables 5-4
Structures with Volatile Fields 5-4
Absolute Addressesvv it 5-5
Pointer Comparisonu ... 5-5
Shared Variables, 5-5
Trigonometric Functions 5-6
Unions e 5-6
Constant Pointer, 5-7
Variable Cast as Void Pointer 5-7

Limitations of Polyspace Verification 5-9

Contents

Examples

6/

Complete Examples 6-2
Simple C Example 6-2
Apache Example 6-2
cxref Example 6-3
T31 Example 6-3
Dishwasherl Example 6-3
Satellite Example 6-4

Functions

7]

xvil

Option Descriptions

+ “Target operating system (C/C++)” on page 1-4

+ “Target processor type (C)” on page 1-6

+ “Generic target options (C/C++)” on page 1-9

+ “Dialect (C)” on page 1-13

+ “Sfr type support (C)” on page 1-16

* “Division round down (C)” on page 1-17

+ “Enum type definition (C)” on page 1-18

+ “Signed right shift (C)” on page 1-19

* “Preprocessor definitions (C/C++)” on page 1-20

+ “Disabled preprocessor definitions (C/C++)” on page 1-21
* “Code from DOS or Windows file system (C/C++)” on page 1-22
+ “Command/script to apply to preprocessed files (C/C++)” on page 1-23
* “Continue with compile error (C/C++)” on page 1-25

+ “Include (C/C++)” on page 1-26

+ “Include folders (C/C++)” on page 1-27

+ “Multitasking (C/C++)” on page 1-28

+ “Entry points (C/C++)” on page 1-30

* “Critical section details (C/C++)” on page 1-32

* “Temporally exclusive tasks (C/C++)” on page 1-34

+ “Check MISRA C:2004” on page 1-36

* “Check MISRA AC AGC” on page 1-38

* “Check MISRA C:2012” on page 1-40

+ “Use generated code requirements (C)” on page 1-42

* “Check custom rules (C/C++)” on page 1-44

* “Files and folders to ignore (C)” on page 1-47

1 Option Descriptions

1-2

“Effective boolean types (C)” on page 1-49

“Allowed pragmas (C)” on page 1-51

“Verify whole application (C/C++)” on page 1-52

“Verify module (C)” on page 1-53

“Variables to initialize (C)” on page 1-55

“Initialization functions (C)” on page 1-57

“Functions to call (C)” on page 1-59

“Verify files independently (C/C++)” on page 1-61

“Common source files (C/C++)” on page 1-63

“Parameters (C)” on page 1-64

“Inputs (C)” on page 1-66

“Initialization functions (C)” on page 1-68

“Step functions (C)” on page 1-69

“Termination functions (C)” on page 1-71

“Variable/function range setup (C/C++)” on page 1-72

“Ignore default initialization of global variables (C)” on page 1-74
“No automatic stubbing (C/C++)” on page 1-76

“Functions to stub (C)” on page 1-78

“Respect types in fields (C/C++)” on page 1-79

“Respect types in global variables (C/C++)” on page 1-81

“Ignore float rounding (C/C++)” on page 1-83

“Green absolute address checks (C/C++)” on page 1-84

“Ignore overflowing computations on constants (C/C++)” on page 1-85
“Allow negative operand for left shifts (C/C++)” on page 1-86
“Detect overflows (C/C++)” on page 1-87

“Detect Overflows in Buffer Size Computation” on page 1-89
“Overflow computation mode (C/C++)” on page 1-91

“Enable pointer arithmetic across fields (C)” on page 1-93

“Allow incomplete or partial allocation of structures (C)” on page 1-95

“Permissive function pointer calls (C)” on page 1-97

Option Descriptions

“Detect uncalled functions (C/C++)” on page 1-98

“Precision level (C/C++)” on page 1-99

“Verification level (C)” on page 1-101

“Verification time limit (C/C++)” on page 1-104

“Retype variables of pointer types (C)” on page 1-105

“Retype symbols of integer types (C)” on page 1-106
“Sensitivity context (C/C++)” on page 1-108

“Improve precision of interprocedural analysis (C/C++)” on page 1-110
“Specific precision (C)” on page 1-111

“Optimize large static initializers (C)” on page 1-112

“Reduce task complexity (C)” on page 1-113

“Inline (C)” on page 1-114

“Depth of verification inside structures (C/C++)” on page 1-116
“Generate report (C/C++)” on page 1-117

“Report template (C/C++)” on page 1-119

“Output format (C/C++)” on page 1-122

“Batch (C/C++)” on page 1-124

“Add to results repository (C/C++)” on page 1-126

“Command/script to apply after the end of the code verification (C/C++)” on page
1-127

“Automatic Orange Tester (C)” on page 1-128
“Number of automatic tests (C)” on page 1-130
“Maximum loop iterations (C)” on page 1-131
“Maximum test time (C)” on page 1-132
“Other (C)” on page 1-133

1-3

1 Option Descriptions

Target operating system (C/C++)

1-4

Specify the operating system of your target application. This option is available on the
Configuration pane under the Target & Compiler node.

This information allows the corresponding system definitions to be used during
preprocessing to analyze the included files properly.

A generic set of includes is provided with Polyspace®. These are automatically included
when the operating system is set to no-predefined-0S or Linux. For projects
developed for other operating systems, analyze these projects using the corresponding
include files for that operating system.

Settings
Default: no-predefined-0S

no-predefined-0S

Analyzes with a general operating system set up. Use with preprocessor macros (-U
or -D) to specify the system flags at compilation time.

Linux
Analyzes with the Linux® system definitions.
Solaris
Analyzes with the Solaris™ system definitions.
This option requires you to add a path to the Solaris include folder in your project, or

use the -1 option at the command line.
VxWorks

Analyzes with the VxWorks® system definitions.

This option requires you to add a path to the VxWorks include folder in your project,
or use the -1 option at the command line.

Visual
Analyzes with the Visual Studio® system definitions. Used for Microsoft® Windows"

systems.

This option requires you to add a path to the Visual Studio include folder in your
project, or use the —1 option at the command line.

Target operating system (C/C++)

Dependencies

Setting this parameter changes the available Dialect options. All options are available
with the no-predefined-0S option. The other operating systems only show usable
dialects for that system.

Command-Line Information

Parameter: —-os-target

Value: no-predefined-0S | Linux | Solaris | VxWorks | Visual
Default: no-predefined-0S

Example: polyspace-code-prover-nodesktop -os-target Linux

See Also
“Dialect (C)” on page 1-13 | “Dialect (C++)” on page 2-5

Related Examples
. “Specify Analysis Options”

More About

. “Compile Operating System Dependent Code”

1-5

1 Option Descriptions

Target processor type (C)

Specify the target processor type. This option is available on the Configuration pane
under the Target & Compiler node.

This determines the size of fundamental data types and the endianess of the target

machine. You can analyze code intended for an unlisted processor type using one of the
other processor types, if they share common data properties.

Settings:
Default: 1386
You can modify some default attributes by selecting the browse button to the right of

the Target processor type drop-down menu. The optional settings for each target are
shown in [brackets] in the table.

Target char [short |int |long |long |float |double |long ptr |signof endian |align
long double char

1386 8 16 32 |32 |64 32 |64 96 32 |signed |Little |32

sparc 8 |16 32 [32 |64 |32 |64 128 |32 |[signed |Big |64

m68k / 8 16 32 (32 |64 32 |64 96 32 |signed |Big 64

ColdFire®

powerpc |8 |16 |32 [32 |64 |32 |64 128 |32 |unsigned/Big |64

c-167 8 16 16 |32 |32 32 |64 64 16 |signed |Little |64

tms320c3x |32 |32 32 |32 |64 32 |32 40P 32 |signed |Little |32

sharc21x6132 (32 [32 [32 |64 (32 [32[64] [32[64] |32 |signed |Little |32

NEC-V850 |8 16 32 (32 |32 32 (32 64 32 |signed |Little |32 [16,

8]

hco8¢ 8 16 16 |32 |32 32 |32[64] |32[64] |16? |unsigned| Big 32 [16]
[32]

hcl2 8 16 16 [32 |32 32 |32[64] |32[64] |32¢ |signed |Big 32 [16]
[32]

MPCSXX 8 16 32 |32 64 32 32 [64] |32[64] |32 |signed |Big 32 [16]

1-6

Target processor type (C)

Target char [short |int |long |long |[float |double |[long ptr |signof endian |align
long double char

cl8 8 16 16 |32 32 32 32 32 16 |signed Little |8
[24]° (24]

x86_64 8 16 32 |64 64 32 64 128 64 |signed Little |64 [32]
[32]

mcpu. . . 8 8[16] |16 |32 32 32 32 [64] 32 [64] |16 |signed Little |32 [16,

(Advanced)[16] [32] [64] [32] 8]

a. The M68k family (68000, 68020, etc.) includes the “ColdFire” processor

b. Operations on long double values will be imprecise.

c. Non ANSI C specified keywords and compiler implementation-dependent pragmas and interrupt facilities are not
taken into account by this support

d. All kinds of pointers (near or far pointer) have 2 bytes (hc08) or 4 bytes (hc12) of width physically.
e. The c18 target supports the type short long as 24-bits.
f. mcpu is a reconfigurable Micro Controller/Processor Unit target. You can use this type to configure one or more

generic targets.

Tips
If your processor is not listed, use a similar processor that shares the same

characteristics, or create an mpcu generic target processor. If your target processor

does not match the characteristics of a processor described above, contact MathWorks®
technical support for advice.

Command-Line Information

Parameter: -target

Value: 1386 | m68k | powerpc | c-167 | x86_64 | tms320c3x |
sharc21x61 | necv850 | hc0O8 | hcl2 | mpcSxx | c18 | mpcu
Default: 1386

Example: polyspace-code-prover-nodesktop -lang ¢ -target m68k

See Also

“Generic target options (C/C++)” on page 1-9

Related Examples
. “Specify Analysis Options”

1-7

1 Option Descriptions

. “Modify Predefined Target Processor Attributes”

. “Define Generic Target Processors”

1-8

Generic target options (C/C++)

Generic target options (C/C++)

The Generic target options dialog box is only available when you select a mcpu target
for Target processor type. The option Target processor type is available on the
Configuration pane under the Target & Compiler node.

Allows the specification of a generic “Micro Controller/Processor Unit" target. Use the
dialog box to specify the name of a new mcpu target — e.g., MyTarget.

The generic target option is incompatible with either:

+ Target operating system set to Visual

+ Dialect set to visual *

That new target is added to the Target processor type option list. The default
characteristics of the new target are (using the type [size, alignment] format):
* char [8, 8], char [16,16]

* short [8,8], short [16, 16]

+ int[16, 16]

+ long [32, 32], long long [32, 32]

* float [32, 32], double [32, 32], long double [32, 32]

* pointer [16, 16]

* char is signed

* little-endian

Changing the genetic target has consequences for:

+ Detection of overflow

+ Computation of sizeof objects

Command-Line Options

When using the command line, specify your target with the other target specification
options.

1-9

1 Option Descriptions

Option

Description

Available
With...

Example

-little-endian

Little-endian architectures
are Less Significant byte First
(LLSF). For example: 1386.

Specifies that the less
significant byte of a short
integer (e.g. 0x00FF) is stored
at the first byte (0xFF) and
the most significant byte
(0x00) at the second byte.

mcpu

polyspace-code-prover-
nodesktop -lang c -target
mcpu -little-endian

-big-endian

Big-endian architectures are
Most Significant byte First
(MSF). For example: SPARC,
m68k.

Specifies that the most
significant byte of a short
integer (e.g. 0xO0FF) is stored
at the first byte (0x00) and the
less significant byte (0xFF) at
the second byte.

mcpu

polyspace-code-prover-
nodesktop -target mcpu -
big-endian

-default-
sign-of -
char [signed]|
unsigned]

Specify default sign of char.

signed: Specifies that char
1s signed, overriding target’s
default.

unsigned: Specifies thatchar
1s unsigned, overriding
target’s default.

All targets

polyspace-code-prover-
nodesktop -default-sign-
of-char unsigned -target
mcpu

-char-is-16bits

char defined as 16 bits and
all objects have a minimum
alignment of 16 bits

Incompatible with -short-
is-8bits and -align 8

mcpu

polyspace-code-prover-
nodesktop -target mcpu -
char-is-16bits

1-10

Generic target options (C/C++)

Option Description Available |Example
With...
-short-is-8bits |Define short as 8 bits, mcpu polyspace-code-prover-
regardless of sign nodesktop -target mcpu -
short-is-8bits
—-int-i1s-32bits |Define Int as 32 bits, mcpu, polyspace-code-prover-
regardless of sign. Alignment |hc08, nodesktop -target mcpu -
is also set to 32 bits. hci2, long-long-is-64bits
mpC5xx
-long-long-is Define long long as 64 bits, [mcpu polyspace-code-prover-
-64bits regardless of sign. Alignment nodesktop -target mcpu -
is also set to 64 bits. long-long-is-64bits
-double-is Define double and long mcpu, polyspace-code-prover-
-64bits double as 64 bits, regardless |sharc21xgnodesktop -target mcpu -
of sign. Alignment is also set |hc08, double-is-64bits
to 64 bits. hcl2,
mpc5xx
-pointer-is Define pointer as 32 bits, mcpu polyspace-code-prover-
-32bits regardless of sign. Alignment nodesktop -target mcpu -
1s also 32 bits. pointer-is-32bits
-align [32]16] |Specifies the largest alignment | mcpu, polyspace-code-prover-
8] of struct or array objects to the nodesktop -target mcpu -
32, 16 or 8 bit boundaries. Only 16 align 16
or 32 bits
Consequently, the array for: hc08,
or struct storage is strictly hcl2,
determined by the size of mpC5xx

the individual data objects
without member and end
padding.

See Also

“Target processor type (C)” on page 1-6 | “Target processor type (C++)” on page 2-3

Related Examples

. “Define Generic Target Processors”

1-11

1 Option Descriptions

More About

. “Common Generic Targets”

1-12

Dialect (C)

Dialect (C)

Allow syntax associated with C language extensions. This option is available on the
Configuration pane under the Target & Compiler node.

Using this option allows additional structure types as keywords of the language, such as
sfr, sbit, and bit. These structures and associated semantics are part of the compiler

that extends the ANSI® C language.

Settings
Default: none

none

Analysis allows only ANSI C standard syntax.
gnu4.6

Analysis allows GCC 4.6 dialect syntax.
gnu4.7

Analysis allows GCC 4.7 dialect syntax.
visuall0

Analysis allows Visual C++® 2010 syntax.
visualll.0
Analysis allows Visual C++ 2012 syntax.
keil
Analysis allows non-ANSI C syntax and semantics associated with the Keil™
products from ARM (www.keil.com).

1ar

Analysis allows non-ANSI C syntax and semantics associated with the compilers
from IAR Systems (www.iar.com).

Dependency
This parameter is dependant on the value of Target operating system. The dialect

options work only with the applicable operating systems. You can use every dialect with
the Target operating system option, no-predefined-0S.

1-13

http://www.keil.com/
http://www.iar.com/

1 Option Descriptions

1-14

Limitations

Polyspace does not support certain aspects of the GNU® 4.7 dialect. These limitations can
cause compilation errors, incomplete results, or false positives.

Vector types and attributes — Not supported, ignores attributes.

Workaround: To reduce compilation issues
+ At the command line, use the option -D _ EMMINTRIN_H_ INCLUDED -D
_XMMINTRIN_H_INCLUDED.

In the Polyspace environment, in Macros > Preprocessor definitions, add two
rows: EMMINTRIN_H_INCLUDED and _XMMINTRIN_H_INCLUDED.

Visibility attributes — Not supported, ignored. This limitation can cause C++
linkage problems in Polyspace Code Prover™.

Workaround: Remove all attributes during preprocessing,

At the command line, use the option -D __attribute__ (x)=.

* In the Polyspace environment, in Macros > Preprocessor definitions, add a
row: __attribute (X)=.

Complex types — Only floating complex types supported, integral complex types
cause an error.

Using built-in library function on complex types — Not supported, stubbed
during analysis. Calls to these functions will return variables with full ranges.
Workaround: To make the analysis more precise, add an include file that defines the
functions for complex variables.

Computed goto — Not supported, causes an error in Code Prover.

Workaround: To ignore the computed gotos in Code Prover, stub the functions
containing the computed gotos:

At the command line, use the option —functions-to-stub funcList where
funcList is the list of functions containing the computed gotos.

* In the Polyspace environment, in the Inputs & Stubbing > Functions to stub

table, use the a7 button to add a row for each function containing the computed
gotos.

Dialect (C)

Nested functions — Not supported, causes an error.

Using built-in library functions on atomic operators — Not supported,
Polyspace stubs the functions. This limitation can cause imprecise results.

IEEE"® floating point library functions — Not supported, causes compilation
error.

This limitation includes isnan, isnanf, isnanl, isinf, isinff, isinfl,
isnormal, and isfinite.

Workaround: In each of your source files, include a file containing the function
definitions or declarations:

+ At the command line, use the option —include filename.

In the Polyspace environment, in Environment Settings > Include, use the 5
button to add a row for your definition/declaration file.

Command-Line Information
Parameter: -dialect

Value: none | gnu4.6 | gnud4.7 | visuallO | visualll.O | keil | iar
Default: none

Example: polyspace-code-prover-nodesktop -sources "filel.c,file2.c"
lang ¢ -0S-target Linux -dialect ghu4.6

See Also

“Target operating system (C/C++)” on page 1-4 | “Target processor type (C)” on page 1-6

Related Examples

“Verify Keil or IAR Dialects”

1-15

1 Option Descriptions

Sfr type support (C)

1-16

Specify the sfr types. This option is available on the Configuration pane under the
Target & Compiler node.

If the code uses sfr keywords, you must declare each sfr type using this option.

Settings
Default: None

List each sfr name and its size in bits.

Dependency

Setting Dialect to keil or 1ar enables this parameter.

Command-Line Information

Parameter: -sfr-types sfr_name=size_in_bits, ...

Name Value: an sfr name

Size Value: 8 | 16 | 32

Default: None

Example: polyspace-code-prover-nodesktop -lang ¢ -dialect iar -sfr-
types sfr=8,sfr32=32,sfrb=16 ...

Division round down (C)

Division round down (C)

Specify how division and modulus of a negative numbers is interpreted by the analysis.
This option is available on the Configuration pane under the Target & Compiler
node.

The ANSI standard stipulates that "if either operand of / or % is negative, whether the
result of the / operator, is the largest integer less or equal than the algebraic quotient or
the smallest integer greater or equal than the quotient, is implementation defined, same
for the sign of the % operator".

Note: a = (a /7 b) * b + a % bisalways true.

Settings
Default: Off

Off

If either operand of / or % is negative, the result of the / operator is the smallest
integer greater or equal than the algebraic quotient. The result of the % operator is
deduced froma %% b =a - (a/ b) *b

:assert(-5/3 == -1 && -5%3 == -2); is true.

¥ On

If either operand / or % is negative, the result of the / operator is the largest integer
less or equal than the algebraic quotient. The result of the % operator is deduced
froma % b =a - (a/ b) * b.

Example: assert(-5/3 == -2 && -5%3 == 1); is true.
Command-Line Information
Parameter: -div-round-down

Default: Off
Example: polyspace-code-prover-nodesktop -div-round-down

1-17

1 Option Descriptions

Enum type definition (C)

1-18

Allow the analysis to use different base types to represent an enumerated type,
depending on the enumerator values and the selected definition. This option is available
on the Configuration pane under the Target & Compiler node.

When using this option, each enum type is represented by the smallest integral type that
can hold its enumeration values.

Settings
Default: signed-int

signed-int
Uses the signed integer type for all dialects except gnu.

For the gnu dialects, it uses the first type that can hold all of the enumerator values
from the following list: signed int, unsigned int, signed long, unsigned
long, signed long long, unsigned long long.

auto-signed-first

Uses the first type that can hold all of the enumerator values from the following list:
signed char, unsigned char, signed short, unsigned short, signed int,
unsigned int, signed long, unsigned long, signed long long, unsigned

long long.

auto-unsigned-first

Uses the first type that can hold all of the enumerator values from the following lists:

+ If enumerator values are positive: unsigned char, unsigned short, unsigned
int, unsigned long, unsigned long long.

+ If one or more enumerator values are negative: signed char, signed short,
signed int, signed long, signed long long.

Command-Line Information

Parameter: -enum-type-definition

Value: signed-int | auto-signed-first | auto-unsigned-first
Default: signed-int

Example: polyspace-code-prover-nodesktop -lang -c -enum-type-
definition auto-signed-first

Signed right shift (C)

Signed right shift (C)

Choose between arithmetical and logical computation. This option is available on the
Configuration pane under the Target & Compiler node.

Settings

Default: Arithmetical

Arithmetical

The sign bit remains:

(-4) > 1= -2

-7) > 1= -4

7>1=3
Logical

0 replaces the sign bit

(-4) >> 1 = (-4U) >> 1 = 2147483646
(-7) > 1 = (-7U) >> 1 = 2147483644
7> 1=3

Command-Line Information

When using the command line, arithmetic is the default computation mode. When this
option is set, logical computation will be performed.

Parameter: -logical-signed-right-shift

Example: polyspace-code-prover-nodesktop -logical-signhed-right-shift

1-19

1 Option Descriptions

Preprocessor definitions (C/C++)

1-20

Define macro compiler flags to be used during compilation phase. This option is available
on the Configuration pane under the Macros node.

Some defines are applied by default, depending on your Target operating system.

Settings

Default: None

Using the o button, add a new row for each macro flag. The flag must be in the format
Flag=Value. If you want Polyspace to ignore the flag, leave the Value blank.

For example,

* namel=name2 replaces all instances of namel by name2.
+ name= tells the software to ignore name.

* name with no equals sign or value replaces all instances of name by 1.

Command-Line Information

You can specify only one flag with each -D option. However, you can specify the option
multiple times.

Parameter: -D

Default: None

Value: flag=value

Example: polyspace-code-prover-nodesktop -D HAVE MYLIB -D int32_t=int

See Also

“Disabled preprocessor definitions (C/C++)” on page 1-21

Disabled preprocessor definitions (C/C++)

Disabled preprocessor definitions (C/C++)

Disable macro compiler flags. This option is available on the Configuration pane under
the Macros node.

Some Target operating system settings enable macro compilation flags by default.
This option allows you disable these macros.

Settings

Default: None

Using the o button, add a new row for each macro flag being disabled.

Command-Line Information

You can specify only one flag with each -U option. However, you can specify the option
multiple times.

Parameter: -U

Default: None

Value: flag

Example: polyspace-code-prover-nodesktop -U HAVE _MYLIB -U USE_COM1

See Also

“Preprocessor definitions (C/C++)” on page 1-20

1-21

1 Option Descriptions

Code from DOS or Windows file system (C/C++)

1-22

Specify that DOS or Windows files are in analysis. This option is available on the
Configuration pane under the Environment Settings node.

Use this options if the contents of the Include or Source folder come from a DOS or
Windows file system. It deals with upper/lower case sensitivity and control character
issues.

Settings

Default: On

Y| On

Analysis understands file names and include paths for Windows/DOS files
For example, with this option,

#include . _.\mY_TEst.h"M

#include "._.\mY_other_ FILE_H"™M

resolves to:

#include "._./my_test_h"

#include "._./my_other_file_h"
Off

Characters are not controlled for files names or paths.

Command-Line Information

Parameter: -dos

Default: On

Example: polyspace-code-prover-nodesktop -dos -1 ./
my_copied_include _dir -D test=1

Command/script to apply to preprocessed files (C/C++)

Command/script to apply to preprocessed files (C/C++)

Specify a perl script to run on each source file after the preprocessing phase. This option
is available on the Configuration pane under the Environment Settings node.

When this option is used, the specified script file or command is run just after the
preprocessing phase on each preprocessed .c file.

The command should be designed to process the standard output from preprocessing and
produce its results in accordance with that standard output. Additionally, It is important
to preserve the number of lines in the preprocessed .ci file. Adding a line or removing one
could result in some unpredictable behavior on the location of checks and MACROS in
the Polyspace viewer.

You can find each preprocessed file in the results directory in the zipped file ci.zip located
in results/ALL/SRC/MACROS. The extension of the preprocessed file is .ci.

Note: The Compilation Assistant is automatically disabled when you specify this option.

Example Script

This script, called replace_keywords, replaces the keyword “Volatile” by “Import”.

#1/usr/bin/perl
my $TOOLS_VERSION = "V1_4 1'";
binmode STDOUT;

Process every line from STDIN until EOF
while ($line = <STDIN>)

Change Volatile to Import
$line =~ s/Volatile/Import/;
print $line;

}

To run this script on preprocessed files:

* On a Linux or Mac workstation: polyspace-code-prover-nodesktop -post-
preprocessing-command “pwd"/replace_keywords

* On a Windows workstation you must give the full path to the Perl scripter:
matlabroot\matlab\polyspace\bin\polyspace-code-prover-

1-23

1 Option Descriptions

nodesktop.exe -post-preprocessing-command matlabroot\sys\perl
\win32\bin\perl._exe <absolute path>\replace_keywords

Command-Line Information

Parameter: -post-preprocessing-command
Default: None

Value: Path to executable file or command in quotes

1-24

Continue with compile error (C/C++)

Continue with compile error (C/C++)

Continue verification even if some source files do not compile. This option is available on
the Configuration pane under the Environment Settings node.

Settings
Default: Off

Off

If a source file does not compile, the verification stops.

Functions that are used but not specified are stubbed automatically.

Y| On

Continues the verification even if only one file compiles. Files that have compilation
errors are not verified. This means that the results may not contain all coding rule
violations or errors.

Functions that are used but not specified are stubbed automatically.
Command-Line Information
Parameter: -continue-with-compile-error

Default: Off
Example: polyspace-code-prover-nodesktop -continue-with-compile-error

1-25

1 Option Descriptions

Include (C/C++)

1-26

Specify files to be included by each C file involved in the analysis. This option is available
on the Configuration pane under the Environment Settings node.

Settings

Default: None

Specify the file name to be included in every C file involved in the analysis.
Polyspace still acts on other directives such as #include <include Ffile._h>.
Command-Line Information

Parameter: -include

Default: None

Value: file (Use —include multiple times for multiple files)

Example: polyspace-code-prover-nodesktop -include ~pwd”/sources/
a file.h -include Zinc/inc_file.h

Include folders (C/C++)

Include folders (C/C++)

View the include folders used for verification.

* In the Project Manager perspective, to add include folders, on the Project Browser,
right-click your project. Select Add Source.

* In the Results Manager perspective, to view the include folders you used, select
Window > Show/Hide View > Settings. Under the node Environment Settings,
you see the folders listed under Include folders.

Settings

This is a read-only option available only from the Results Manager perspective. In the
Project Manager perspective, unlike other options, you do not specify include folders on
the Configuration pane. Instead, you add your include folders on the Project Browser
pane.

Command-Line Information

Parameter: -1

Value: Folder name

Example: polyspace-code-prover-nodesktop -1 /coml/inc -1 /coml/sys/
inc

See Also
“17 | “Include (C/C++)”

1-27

1 Option Descriptions

Multitasking (C/C++)

1-28

Specify whether the code is intended for a multitasking application. This option is
available on the Configuration pane under the Multitasking node.

Settings
Default: Off

41 0On
The code is intended for a multitasking application.

Polyspace verifies all functions that are called by the main and other entry-point
functions.

Off
The code is not intended for a multitasking application.
+ If amain exists, Polyspace verifies only those functions that are called by the
main.

+ If amain does not exist, Polyspace verifies all functions. To verify all functions,
Polyspace generates a main function and calls functions from the generated main
in a sequence you specify. For more information, see “Verify module (C)” or “Verify
module (C++)”.

Dependencies

To enable multitasking verification, you must also select Code Prover Verification
> Verify whole application. Otherwise, apart from main, all entry point functions
appear as unreachable.

Command-Line Information

There is no command-line option to solely turn on multitasking verification. However,
using the option -entry-points turns on multitasking verification.

See Also

“Entry points (C/C++)” | “Critical section details (C/C++)” | “Temporally exclusive tasks
(C/IC++)”

Multitasking (C/C++)

Related Examples
. “Model Tasks”

. “Model Tasks if main Contains Infinite Loop”
. “Model Execution Sequence in Tasks”

More About

. “Requirements for Multitasking Verification”

1-29

1 Option Descriptions

Entry points (C/C++)

Specify functions that serve as entry points to your code. Use this option when your code
is intended for multitasking. This option is available on the Configuration pane under
the Multitasking node.

Settings

Default: none

Click I:II-II:I to add a field. Enter function name.

Dependencies
This option is enabled only if you select the Multitasking box.

To verify your entry point functions, under Code Prover Verification, select Verify
whole application. Otherwise, apart from main, all entry point functions appear as
unreachable.

Tips
* The entry point function must have the form

void functionName (void)
+ If a function Func takes arguments, you cannot use it directly as entry point. To use
func as entry point:
1 Create a new function newFunc. The declaration must be of the form void
newFunc (void).

2 Declare arguments to func as volati le variables local to newFunc. Call func
inside newFunc.

3 Specify newFunc as entry point.

+ If a function func models cyclic tasks or interrupts that can run zero or more times,
to specify the multiple cycles for Polyspace:

1 Create a new function newFunc of the form

1-30

Entry points (C/C++)

void newFunc (void)

2 In the body of newFunc, call func inside a loop with unspecified number of runs.
Make the loop control variable volatile int. For example:

void newFunc(void) {
volatile int randomValue = 0;
while(randomvalue) {

funcQ;
¥

}
3 Specify newFunc as entry point.

Command-Line Information
Parameter: -entry-points
Value: functioni[,function2[,...1]

Example: polyspace-code-prover-nodesktop -sources file name -entry-
points func_1,func_ 2

See Also

“Critical section details (C/C++)” | “Temporally exclusive tasks (C/C++)”

Related Examples
. “Specify Analysis Options”
. “Model Tasks”

. “Model Tasks if main Contains Infinite Loop”
. “Model Execution Sequence in Tasks”

More About

. “Requirements for Multitasking Verification”

1-31

1 Option Descriptions

Critical section details (C/C++)

When verifying multitasking code, Polyspace considers that a critical section lies between
calls to a lock function and an unlock function. Specify the two function names. This
option is available on the Configuration pane under the Multitasking node.

When a task my_task calls a lock function my_lock, all other tasks calling my lock
must wait till my_task calls the corresponding unlock function.

Settings

Default: None

Click i to add a field.

* In Starting procedure, enter name of lock function.

* In Ending procedure, enter name of unlock function.

Dependencies
This option is enabled only if you select the Multitasking box.
Tips

+ For function calls that begin and end critical sections, Polyspace ignores the function
arguments.

For instance, Polyspace treats the two code sections below as the same critical section.

Starting procedure: func_begin Starting procedure: func_begin
Ending procedure: func_end Ending procedure: func_end
void func() { void func() {
func_begin(l); func_begin(2);
/* Critical section code */ /* Critical section code */
func_end(1); func_end(2);
} }

Command-Line Information
Parameter: -critical-section-begin | -critical-section-end

1-32

Critical section details (C/C++)

Value: functioni:csl[,function2:cs2[,-.-.1]
Default: None

Example: polyspace-code-prover-nodesktop -sources file name -
critical-section-begin func_begin:csl -critical-section-end
func_end:csl

See Also
“Multitasking (C/C++)” | “Entry points (C/C++)” | “Temporally exclusive tasks (C/C++)”

Related Examples
. “Specify Analysis Options”

. “Prevent Concurrent Access Using Critical Sections”
More About
. “Requirements for Multitasking Verification”

1-33

1 Option Descriptions

Temporally exclusive tasks (C/C++)

Specify functions that cannot execute concurrently. The execution of the functions cannot
overlap with each other. Use this option to implement temporal exclusion in multitasking
code. This option is available on the Configuration pane under the Multitasking node.

Settings

Default: None

Click oo to add a field. In each field, enter a space-separated list of functions. Polyspace
considers that the functions in the list cannot execute concurrently.

Dependencies

This option is enabled only if you select the Multitasking box.

Command-Line Information

For the command-line option, create a temporal exclusions file in the following format:

* On each line, enter one group of temporally excluded tasks.
+ Within a line, the tasks are separated by spaces.
Parameter: —temporal-exclusions-fTile

Value: Name of temporal exclusions file

Default: None

Example: polyspace-code-prover-nodesktop -sources file name -
temporal-exclusions-file "C:\exclusions_file.txt"

See Also
“Multitasking (C/C++)” | “Entry points (C/C++)” | “Critical section details (C/C++)”

Related Examples

. “Specify Analysis Options”

. “Prevent Concurrent Access Using Temporally Exclusive Tasks”

1-34

Temporally exclusive tasks (C/C++)

More About

. “Requirements for Multitasking Verification”

1-35

1 Option Descriptions

Check MISRA C:2004

1-36

Specify whether to check for violation of MISRA C*:2004 rules. Each value of the option
corresponds to a subset of rules to check. This option is available on the Configuration
pane under the Coding Rules node.

After analysis, the Results Summary pane lists the coding rule violations. On the
Source pane, for every coding rule violation, Polyspace assigns a ¥ symbol to the
keyword or identifier relevant to the violation.

Settings
Default: required-rules

required-rules

Check required coding rules.
all-rules

Check required and advisory coding rules.
SQO-subsetl

Check only a subset of MISRA C rules. In Polyspace Code Prover, observing these
rules can reduce the number of unproven results. For more information, see
“Software Quality Objective Subsets (C:2004)”.

SQO-subset2

Check a subset of rules including SQO-subsetl and some additional rules. In
Polyspace Code Prover, observing these rules can further reduce the number of
unproven results. For more information, see “Software Quality Objective Subsets
(C:2004)".

custom

Specify coding rules to check. Click ‘Ed—lt/ to create a coding rules file. After
creating and saving the file, to reuse it for another project, do one of the following:

+ Enter full path to the file in the space provided.

’ Edit

Click . Click '/ to load the file.

Format of the custom file:

Check MISRA C:2004

rule number off|on
Use # to enter comments in the file. For example:

10.5 off # rule 10.5: type conversion
17.2 on # rule 17.2: pointers

Tips
To reduce unproven results:
1 Find coding rule violations in SQO-subsetl. Fix your code to address the violations

and rerun verification.

2 Find coding rule violations in SQO-subset2. Fix your code to address the violations
and rerun verification.

Command-Line Information

Parameter: -misra2

Value: required-rules | all-rules | SQO-subsetl | SQO-subset2 | file
Default: required-rules

Example: polyspace-code-prover-nodesktop -sources file name -misra2
all-rules

See Also

“Files and folders to ignore (C)”

Related Examples

. “Specify Analysis Options”

. “Activate Coding Rules Checker”

. “Select Specific MISRA or JSF Coding Rules”

More About
. “Polyspace MISRA C 2004 and MISRA AC AGC Checkers”
. “Software Quality Objective Subsets (C:2004)”

1-37

1 Option Descriptions

Check MISRA AC AGC

1-38

Specify whether to check for violation of rules specified by MISRA AC AGC Guidelines
for the Application of MISRA-C:2004 in the Context of Automatic Code Generation. Each
value of the option corresponds to a subset of rules to check. This option is available on
the Configuration pane under the Coding Rules node.

After analysis, the Results Summary pane lists the coding rule violations. On the
Source pane, for every coding rule violation, assigns a ¥ symbol to the keyword or
identifier relevant to the violation.

Settings
Default: OBL-rules

OBL-rules
Check required coding rules.
OBL-REC-rules
Check required and recommended rules.
all-rules
Check required, recommended and readability-related rules.
SQO-subsetl

Check a subset of rules. In Polyspace Code Prover, observing these rules can reduce
the number of unproven results. For more information, see “Software Quality
Objective Subsets (AC AGC)”.

SQO-subset2

Check a subset of rules including SQO-subsetl and some additional rules. In
Polyspace Code Prover, observing these rules can further reduce the number of
unproven results. For more information, see “Software Quality Objective Subsets (AC

AGC)”.
custom

Specify coding rules to check. Click ‘Ed_lt/ to create a coding rules file.

After creating and saving the file, to reuse it for another project, do one of the
following:

Check MISRA AC AGC

* Enter full path to the file in the space provided.

ctick 538 cricc O 46 10ad the file.

Format of the custom file:

rule number off]on
Use # to enter comments in the file. For example:

10.5 off # rule 10.5: type conversion
17.2 on # rule 17.2: pointers

Tips
To reduce unproven results:
1 Find coding rule violations in SQO-subsetl. Fix your code to address the violations

and rerun verification.

2 Find coding rule violations in SQO-subset2. Fix your code to address the violations
and rerun verification.

Command-Line Information

Parameter: -misra-ac-agc

Value: OBL-rules | OBL-REC-rules | all-rules | SQO-subsetl | SQO-subset? |
file

Default: OBL-rules

Example: polyspace-code-prover-nodesktop -sources file name -misra-
ac-agc all-rules

Related Examples

. “Specify Analysis Options”

. “Activate Coding Rules Checker”

. “Select Specific MISRA or JSF Coding Rules”

More About

. “Polyspace MISRA C 2004 and MISRA AC AGC Checkers”
. “MISRA C:2004 Coding Rules”
. “Software Quality Objective Subsets (AC AGC)”

1-39

1 Option Descriptions

Check MISRA C:2012

1-40

Specify whether to check for violations of MISRA C:2012 guidelines. Each value of the
option corresponds to a subset of guidelines to check. This option is available on the
Configuration pane under the Coding Rules node.

After analysis, the Results Summary pane lists the coding rule violations. On the
Source pane, for every coding rule violation, Polyspace assigns a ¥ symbol to the
keyword or identifier relevant to the violation.

Settings
Default: mandatory-required

mandatory-required

Check mandatory and required guidelines.
mandatory

Check mandatory guidelines.
all

Check mandatory, required, and advisory guidelines.
SQO-subsetl

Check only a subset of guidelines. In Polyspace Code Prover, observing these rules
can reduce the number of unproven results. For more information, see “Software
Quality Objective Subsets (C:2012)”.

SQO-subset2

Check a subset of guidelines, SQO-subsetl, plus some additional rules. In Polyspace
Code Prover, observing these rules can further reduce the number of unproven
results. For more information, see “Software Quality Objective Subsets (C:2012)”.

custom

Specify guidelines to check. Click ‘Ed—lt/ to create a coding rules file. Save the file.
To reuse it for another project, do one of the following:

+ Enter full path to the file in the space provided.

ctick L5) cticc [6 10ad the file.

Check MISRA C:2012

Custom file format:

rule number off|on
Use # to enter comments in the file. For example:

10.5 off # rule 10.5: essential type model
17.2 on # rule 17.2: functions

Tips
To reduce unproven results:
1 Find coding rule violations in SQO-subsetl. Fix your code to address the violations.

Rerun verification.

2 Find coding rule violations in SQO-subset2. Fix your code to address the violations.
Rerun verification.

Command-Line Information

Parameter: -misra3

Value: mandatory | mandatory-required | all | SQO-subsetl | SQO-subset?2 |
file

Default: mandatory-required

Example: polyspace-code-prover-nodesktop -lang ¢ -sources file name -
misra3 mandatory-required

See Also

“Files and folders to ignore (C)”

Related Examples

. “Specify Analysis Options”

. “Activate Coding Rules Checker”

. “Select Specific MISRA or JSF Coding Rules”

More About
. “Polyspace MISRA C:2012 Checker”
. “Software Quality Objective Subsets (C:2012)”

141

1 Option Descriptions

Use generated code requirements (C)

Specify whether to use the MISRA C:2012 categories for automatically generated code.
This option changes which rules are mandatory, required, or advisory. This option is
available on the Configuration pane under the Coding Rules node.

Settings
Default: Off (On for analyses started from the Simulink® plug-in.)

Off

Use the normal categories (mandatory, required, advisory) for MISRA C:2012 coding
guideline checking.

41 On
Use the generated code categories (mandatory, required, advisory, readability) for
MISRA C:2012 coding guideline checking.

For analyses started from the Simulink plug-in, this option is the default value.

Category changed to Advisory

These rules are changed to advisory:

5.3

7.1

8.4, 8.5, 8.14

10.1, 10.2, 10.3, 10.4, 10.6, 10.7, 10.8
14.4, 14.4

15.2, 15.3

16.1, 16.2, 16.3, 16.4, 16.5, 16.6, 16.7
20.8

Category changed to Readability

These guidelines are changed to readability:

1-42

Category changed to Readabi ity

* Dir4.5

+ 2.3,24,25,2.6, 2.7
+ 5.9

¢ 72,73

+ 9.2,93,95

- 119

+ 13.3

c 14.2

+ 15.7

+ 17.5,17.7,17.8
+ 185

+ 20.5

Dependency

To use this option, first select the Check MISRA C:2012 option.

Command-Line Information

Parameter: -misra3-agc-mode

Default: Off

Example: polyspace-code-prover-nodesktop -sources file name -misra3
all -misra3-agc-mode

See Also
“Files and folders to ignore (C)” | “Check MISRA C:2012” on page 1-40

Related Examples
. “Specify Analysis Options”
. “Activate Coding Rules Checker”

More About
. “Polyspace MISRA C:2012 Checker”

1-43

1 Option Descriptions

Check custom rules (C/C++)

Define naming conventions for identifiers and check your code against them. This option
is available on the Configuration pane under the Coding Rules node.

After analysis, the Results Summary pane lists violations of the naming conventions.

On the Source pane, for every violation, Polyspace assigns a ¥ symbol to the keyword
or identifier relevant to the violation.

Settings
Default: Off

Y| On

Polyspace matches identifiers in your code against text patterns you define. Define
the text patterns in a custom coding rules file. To create a coding rules file,

* Use the custom rules wizard:

1 .
Click ‘Ed—lt/ The New File window opens.

2 From the drop-down list Set the following state to all Custom C, select
Off. Click Apply.

3 For every custom rule you want to check:

Select On'@,
In the Convention column, enter the error message you want to display

if the rule is violated.

For example, for rule 4.3, All struct fields must follow the specified
pattern., you can enter All struct fields must begin with s .
This message appears on the Check Details pane if:

* You specify the Pattern as s_[A-Za-z0-9_].
* A structure field in your code does not begin with s_.

¢ In the Pattern column, enter the text pattern.

1-44

Check custom rules (C/C++)

For example, for rule 4.3, All struct fields must follow the specified
pattern., you can enter s_[A-Za-z0-9 7. Polyspace reports violation of
rule 4.3 if a structure field does not begin with s_.

* Manually edit an existing custom coding rules file:

1 Open the file with a text editor.

2 For every custom rule you want to check, enter the following information in
adjacent lines.

a Rule number, followed by on. For example:

4.3 on

b The error message you want to display starting with convention=. For
example:

convention=All struct fields must begin with s_

¢ The text pattern starting with pattern=. For example:
pattern=s_[A-Za-z0-9]
To use an existing coding rules file, enter the full path to the file in the field provided

or use ' in the New File window to navigate to the file location.
Off

Polyspace does not check your code against custom naming conventions.

Command-Line Information
Parameter: -custom-rules

Value: Name of coding rules file
Default: Off

Example: polyspace-code-prover-nodesktop -sources file name -custom-
rules "C:\Rules\myrules.txt"

Related Examples
. “Specify Analysis Options”
. “Activate Coding Rules Checker”

. “Create Custom Coding Rules”

1-45

1 Option Descriptions

More About

. “Format of Custom Coding Rules File”

. “Custom Naming Convention Rules”

1-46

Files and folders to ignore (C)

Files and folders to ignore (C)

Specify files and folders to ignore during coding rules checking. This option is available
on the Configuration pane under the Inputs & Stubbing node. The files and folders
are not ignored during Code Prover verification.

Settings
Default: al I-headers

all-headers
Ignore included . h files
all
Ignore all files in include folders
custom
Ignore include files and folders that you specify in the File/Folder view. To add files

to the custom File/Folder list, select 1/ to choose the files and folders to exclude.
To remove a file or folder from the list of excluded files and folders, select the row.

Then click (¢ |

Dependencies

This option is enabled only if you select one of the options Check MISRA C:2004,
Check MISRA C:2012, Check MISRA AC AGC or Check custom rules.

Command-Line Information

Parameter: -includes-to-ignore

Value: all-headers | all | file1[,file2[,.-.1]1 | folderi[,folder2[,..-1]
Default: al 1-headers

Example: polyspace-code-prover-nodesktop -lang ¢ -sources file name -
misra2 required-rules -includes-to-ignore "C:\usr\include"

See Also
“Check MISRA C:2004” | “Check MISRA C:2012” | “Check MISRA AC AGC” | “Check
custom rules (C/C++)”

1-47

1 Option Descriptions

Related Examples

. “Specify Analysis Options”

. “Activate Coding Rules Checker”

. “Exclude Files from Rules Checking”

1-48

Effective boolean types (C)

Effective boolean types (C)

Specify data types that you want Polyspace to treat as Boolean. You can specify a data
type only if you have defined it through a typedef statement in your source code. This
option is available on the Configuration pane under the Coding Rules node.

Use this option to allow Polyspace to check the following MISRA C or MISRA® AC AGC
rules:

12.6: Operands of logical operators, &&, | |, and !, should be effectively Boolean.
Expressions that are effectively Boolean should not be used as operands to other
operators.

13.2: Tests of a value against zero should be made explicit, unless the operand is
effectively Boolean.

15.4: A switch expression should not represent a value that is effectively Boolean.
Settings

Default: None

Click o to add a field. Enter a type name that you want Polyspace to treat as Boolean.

Dependencies

This option is enabled only if you select one of the options Check MISRA C:2004,
Check MISRA AC AGC or Check MISRA C:2012.

Command-Line Information

Parameter: -boolean-types

Value: typel[,type2[,---11

Default: None

Example: polyspace-code-prover-nodesktop -sources filename -misra2
required-rules -boolean-types booleanl t,boolean2_t

See Also
“Check MISRA C:2004” | “Check MISRA AC AGC”

1-49

1 Option Descriptions

Related Examples

. “Activate Coding Rules Checker”
. “Specify Boolean Types”

More About
. “MISRA C:2004 Coding Rules”

1-50

Allowed pragmas (C)

Allowed pragmas (C)

Specify pragma directives for which MISRA C rule 3.4 should not be applied. MISRA C
or MISRA AC AGC rule 3.4 requires checking that all pragma directives are documented
within the documentation of the compiler. This option is available on the Configuration
pane under the Coding Rules node.

Settings

Default: None

Click oo to add a field. Enter the pragma name that you want Polyspace to ignore during
MISRA C checking .

Dependencies

This option is enabled only if you select one of the options Check MISRA C:2004 or
Check MISRA AC AGC.

Command-Line Information

Parameter: —-al lowed-pragmas

Value: pragmail[,pragma2[, ---11

Default: None

Example: polyspace-code-prover-nodesktop -sources filename -misra2
required-rules -allowed-pragmas pragma_01,pragma_02

See Also
“Check MISRA C:2004” | “Check MISRA AC AGC”

Related Examples
“Activate Coding Rules Checker”

More About
“MISRA C:2004 Coding Rules”

1-51

1 Option Descriptions

Verify whole application (C/C++)

1-52

Specify that Polyspace verification must stop if a main function is not present in the
source files. This option is available on the Configuration pane under the Code Prover
Verification node.

Settings
Default: Off

@ On
Polyspace verification stops if it does not find a main function in the source files.
Off

Polyspace continues verification even when a main function is not present in the
source files. If a main is not present, it generates a file __polyspace_main.c that
contains a main function.

Command-Line Information
Parameter: -main
Default: On

See Also
“Verify module (C)” | “Verify module (C++)”

Related Examples
. “Specify Analysis Options”

More About

. “Main Generator Overview”

Verify module (C)

Verify module (C)

Specify that Polyspace must generate a main function if it does not find one in the source
files. This option is available on the Configuration pane under the Code Prover
Verification node.

Settings
Default: On
@ On

Polyspace generates a main function if it does not find one in the source files. The
generated main:
+ Initializes variables that you specify using Variables to initialize.

+ Calls functions that you specify using Initialization functions ahead of other
functions.

+ Calls functions that you specify using Functions to call in arbitrary order.
If you do not specify the above options explicitly, the generated main:

+ Initializes all global variables except those declared with keywords const and
static.

+ Calls in arbitrary order all functions that are not called anywhere in the source
files. Polyspace considers that global variables can be written between two
consecutive function calls. Therefore, in each called function, global variables
initially have the full range of values allowed by their type.

Off

Polyspace stops verification if a main function is not present in the source files.

Command-Line Information
Parameter: -main-generator
Default: Off

See Also

“Verify whole application (C/C++)” | “Variables to initialize (C)” | “Initialization
functions (C)” | “Functions to call (C)”

1-53

1 Option Descriptions

Related Examples
. “Specify Analysis Options”

. “Automatically Generate a Main”
More About
. “Main Generator Overview”

1-54

Variables to initialize (C)

Variables to initialize (C)

Specify global variables that you want the generated main to initialize. Despite the
initialization, Polyspace considers these variables to have any value allowed by their
type. This option is available on the Configuration pane under the Code Prover
Verification node.

Settings
Default: public

none
The generated main does not initialize global variables.
public

The generated main initializes all global variables except those declared with
keywords static and const.

all

The generated main initializes all global variables except those declared with
keyword const.

custom

The generated main only initializes global variables that you specify. Click ol to add
a field. Enter a global variable name.

Dependencies

This option is enabled only if you select Code Prover Verification > Verify module.

Command-Line Information

Parameter: -main-generator-writes-variables

Value: none | public | all | custom=variablel[,variable2[,..-1]
Default: public

Example: polyspace-code-prover-nodesktop -sources file name -main-
generator -main-generator-writes-variables all

See Also

“Verify module (C)” | “Initialization functions (C)” | “Functions to call (C)”

1-55

1 Option Descriptions

Related Examples
. “Specify Analysis Options”

. “Automatically Generate a Main”
More About
. “Main Generator Overview”

1-56

Initialization functions (C)

Initialization functions (C)

Specify functions that you want the generated main to call ahead of other functions. This
option is available on the Configuration pane under the Code Prover Verification
node.

Settings

Default: None

Click EII.II:I to add a field. Enter the name of a function.

Tips

Although these functions are called ahead of other functions, they can be called in
arbitrary order. If you want to call your initialization functions in a specific order,
manually write a main function to call them.

Command-Line Information

Parameter: -functions-cal led-before-main

Value: functioni[,function2[,...1]

Default: None

Example: polyspace-code-prover-nodesktop -sources file name -main-
generator -functions-called-before-main myfunc

Dependencies

This option is enabled only if you select Code Prover Verification > Verify module.

See Also

“Verify module (C)” | “Variables to initialize (C)” | “Functions to call (C)”
Related Examples

. “Specify Analysis Options”

. “Automatically Generate a Main”

1-57

1 Option Descriptions

More About

. “Main Generator Overview”

1-58

Functions to call (C)

Functions to call (C)

Specify the functions that you want the generated main to call. The main calls these
functions after the ones you specify through the Initialization functions option. This
option is available on the Configuration pane under the Code Prover Verification
node.

Settings
Default: unused

none
The generated main does not call any function.
unused

The generated main calls only those functions that are not called in the source code.
It does not call inlined functions.

all
The generated main calls all functions except inlined ones.

custom

The generated main calls functions that you specify. Click oo to add a field. Enter
the name of a function.

Dependencies

This option is enabled only if you select Code Prover Verification > Verify module.

Tips
+ Select unused when you use Code Prover Verification > Verify files
independently.

+ If you want the generated main to call an inlined function, select custom and specify
the name of the function.

* To verify a multitasking application without a main, select none.

* The generated main can call the functions in arbitrary order. If you want to call your
functions in a specific order, manually write a main function to call them.

1-59

1 Option Descriptions

Command-Line Information

Parameter: -main-generator-calls

Value: none | unused | all | custom=functioni[,function2[,..-1]
Default: unused

Example: polyspace-code-prover-nodesktop -sources file name -main-
generator -main-generator-calls all

See Also

“Verify module (C)” | “Variables to initialize (C)” | “Initialization functions (C)”

Related Examples
. “Specify Analysis Options”

. “Automatically Generate a Main”
More About
. “Main Generator Overview”

1-60

Verify files independently (C/C++)

Verify files independently (C/C++)

Specify that a separate verification job will be created for each source file. Each file is
compiled, sent to the remote verification server, and verified individually. Verification
results can be viewed for the entire project or for individual files. This option is available
on the Configuration pane under the Code Prover Verification node.

Settings
Default: Off

41 On
Polyspace creates a separate verification job for each source file.

Off
Polyspace creates a single verification job for all source files in a module.

Dependencies

This option is enabled only if you select Code Prover Verification > Verify module on
the Configuration pane.

Tips

+ If you perform a file by file verification, you cannot specify multitasking options.

Command-Line Information

Parameter: -unit-by-unit

Default: Off

Example: polyspace-code-prover-nodesktop -sources file name -unit-by-
unit

See Also

“Common source files (C/C++)”

Related Examples
. “Specify Analysis Options”

1-61

1 Option Descriptions

. “Run File-by-File Verification”
. “Run File-by-File Batch Verification”

1-62

Common source files (C/C++)

Common source files (C/C+4+)

For a file by file verification, specify files that you want to include with each source file
verification. These files are compiled once, and then linked to each verification. This
option is available on the Configuration pane under the Code Prover Verification
node.

For instance, if multiple source files call the same function, use this option to specify the
file that contains the function definition. Otherwise, Polyspace stubs functions that are
called but not defined in the source files.

Settings

Default: None

Click o to add a field. Enter the full path to a file. Otherwise, use the 1 button to
navigate to the file location.

Dependencies

This option is enabled only if you select Verify files independently.

Command-Line Information

Parameter: -unit-by-unit-common-source

Value: filel[,file2[,..-11

Default: None

Example: polyspace-code-prover-nodesktop -sources file name -unit-by-
unit -unit-by-unit-common-source definitions.c

See Also
“Verify files independently (C/C++)”

Related Examples

. “Specify Analysis Options”

. “Run File-by-File Verification”

. “Run File-by-File Batch Verification”

1-63

1 Option Descriptions

Parameters (C)

This option is available only for model-generated code. Specify variables that the
generated main must initialize before the cyclic code loop begins. Before the loop begins,
Polyspace considers these variables to have any value allowed by their type. This option
is available on the Configuration pane under the Code Prover Verification node.

Settings
Default: public

none
The generated main does not initialize variables.

public
The generated main initializes all variables except those declared with keywords
static and const

all

The generated main initializes all variables except those declared with keyword
const.

custom

The generated main only initializes variables that you specify. Click o to add a
field. Enter variable name.

Command-Line Information

Parameter: -variables-written-before-loop

Value: none | public | all | custom=variablei[,variable2[,..-1]
Default: public

Example: polyspace-code-prover-nodesktop -sources file name -main-
generator -variables-written-before-loop all

See Also

“Inputs (C)” | “Initialization functions (C)” | “Step functions (C)” | “Termination
functions (C)”

Related Examples
. “Specify Analysis Options”

1-64

Parameters (C)

. “Configure Polyspace Analysis Options”

More About
. “Recommended Polyspace options for Verifying Generated Code”
. “Main Generation for Model Verification”

1-65

1 Option Descriptions

Inputs (C)

1-66

This option is available only for model-generated code. Specify variables that the
generated main must initialize at the beginning of every iteration of the cyclic code loop.
At the beginning of every loop iteration, Polyspace considers these variables to have
anyvalue allowed by their type. This option is available on the Configuration pane
under the Code Prover Verification node.

Settings
Default: public

none
The generated main does not initialize variables.
public

The generated main initializes all variables except those declared with keywords
static and const

all

The generated main initializes all variables except those declared with keyword
const.

custom

The generated main only initializes variables that you specify. Click oo to add a
field. Enter variable name.

Command-Line Information

Parameter: -variables-written-in-loop

Value: none | public | all | custom=variablei[,variable2[,...]1]
Default: public

Example: polyspace-code-prover-nodesktop -sources file name -main-
generator -variables-written-in-loop all

See Also

“Parameters (C)” | “Initialization functions (C)” | “Step functions (C)” | “Termination
functions (C)”

Inputs (C)

Related Examples
. “Specify Analysis Options”
. “Configure Polyspace Analysis Options”

More About
. “Recommended Polyspace options for Verifying Generated Code”
. “Main Generation for Model Verification”

1-67

1 Option Descriptions

Initialization functions (C)

1-68

This option is available only for model-generated code. Specify functions that the
generated main must call before the cyclic code begins. This option is available on the
Configuration pane under the Code Prover Verification node.

Settings

Default: None
Click I:II-II:I to add a field. Enter function name.

Command-Line Information

Parameter: -functions-cal led-before-loop

Value: functioni[,function2[,...1]

Default: None

Example: polyspace-code-prover-nodesktop -sources file name -main-
generator -functions-called-before-loop myfunc

See Also

“Parameters (C)” | “Inputs (C)” | “Step functions (C)” | “Termination functions (C)”

Related Examples
. “Specify Analysis Options”
. “Configure Polyspace Analysis Options”

More About
. “Recommended Polyspace options for Verifying Generated Code”
. “Main Generation for Model Verification”

Step functions (C)

Step functions (C)

This option is available only for model-generated code. Specify functions that the
generated main must call in each cycle of the cyclic code. This option is available on the
Configuration pane under the Code Prover Verification node.

Settings
Default: unused

none
The generated main does not call functions in the cyclic code.
unused

The generated main calls all functions that are not called elsewhere in the code. In
particular, if you specify certain functions for the options Initialization functions
or Termination functions, the generated main does not call those functions in the
cyclic code. It also does not call inlined functions.

all
The generated main calls all functions except inlined ones. If you specify certain
functions for the options Initialization functions or Termination functions, the
generated main does not call those functions in the cyclic code.

custom
The generated main calls functions that you specify. Click oo to add a field. Enter
function name.

Tips

+ When you select unused, the generated main does not call a function if it is called
elsewhere. However, this rule does not apply to calls through function pointers. The
generated main calls a function even when it is called elsewhere through a function
pointer.

+ If you have specified a function for the option Initialization functions or
Termination functions, to call it inside the cyclic code, use custom and specify the
function name.

Command-Line Information
Parameter: -functions-called-in-loop

1-69

1 Option Descriptions

Value: none | unused | all | custom=functioni[,function2[,..-1]
Default: unused

Example: polyspace-code-prover-nodesktop -sources file name -main-
generator -functions-called-in-loop all

See Also

“Parameters (C)” | “Inputs (C)” | “Initialization functions (C)” | “Termination functions

€y

Related Examples
. “Specify Analysis Options”
. “Configure Polyspace Analysis Options”

More About
. “Recommended Polyspace options for Verifying Generated Code”
. “Main Generation for Model Verification”

1-70

Termination functions (C)

Termination functions (C)

This option is available only for model-generated code. Specify functions that the
generated main must call after the cyclic code ends. This option is available on the
Configuration pane under the Code Prover Verification node.

Settings

Default: None

Click I:II-II:I to add a field. Enter function name.

Command-Line Information

Parameter: -functions-cal led-after-loop

Value: functioni[,function2[,...1]

Default: None

Example: polyspace-code-prover-nodesktop -sources file name -main-
generator -functions-called-after-loop myfunc

See Also

“Parameters (C)” | “Inputs (C)” | “Initialization functions (C)” | “Step functions (C)”

Related Examples
. “Specify Analysis Options”
. “Configure Polyspace Analysis Options”

More About
. “Recommended Polyspace options for Verifying Generated Code”
. “Main Generation for Model Verification”

1-71

1 Option Descriptions

Variable/function range setup (C/C++)

1-72

Specify range for global variables or function outputs using a Data Range
Specifications template file. The template file can be either a text or an XML file. This
option is available on the Configuration pane under the Inputs & Stubbing node.

Settings

Default: None

Enter full path to the template file. Alternately, click ‘Ed—lt/ to open a Data Range
Specifications wizard. This wizard allows you to generate a template file or navigate to
an existing template file.

Command-Line Information

Parameter: -data-range-specifications

Value: file

Default: None

Example: polyspace-code-prover-nodesktop -sources file name -data-
range-specifications "C:\DRS\range.txt"

See Also
“Functions to stub (C)” on page 1-78 | “Ignore default initialization of global variables
(C)”

Related Examples

. “Specify Analysis Options”

. “Create Data Range Specification Template”

. “Specify Data Ranges Using Existing Template”
. “Specify Data Ranges Using Text Files”

More About

. “Data Range Specifications”
. “DRS Configuration Settings”

Variable/function range setup (C/C++)

“Variable Scope”
“XML Format of DRS File”

1-73

1 Option Descriptions

Ignore default initialization of global variables (C)

1-74

Specify that Polyspace must not treat global variables as initialized. This option is
available on the Configuration pane under the Inputs & Stubbing node.

Settings
Default: Off

Y| On

Polyspace ignores implicit initialization of global variables. The verification generates
a red Non-initialized variable error if your code reads a global variable before
writing to it.

Off
Polyspace considers global variables to be initialized according to ANSI C standards.
For instance, the default values are:
* Ofor int
* 0 for char
+ 0.0 for Float

Tips

+ If you initialize a global variable using the generated main, Polyspace does not
produce a red Non-initialized variable error if your code reads the variable before
writing to it. The error is not produced even if you turn on the option Ignore default
initialization of global variables.

+ If you initialize a global variables using the generated main, Polyspace considers that

before the first write operation on the variable in a function, the variable can take any
value allowed by its type.

For more information on initializing global variables using the generated main, see
“Variables to initialize (C)”.

Command-Line Information
Parameter: -no-def-init-glob
Default: Off

Ignore default initialization of global variables (C)

See Also

“Non-1initialized variable”

Related Examples
. “Specify Analysis Options”

1-75

1 Option Descriptions

No automatic stubbing (C/C++)

1-76

Specify that verification must stop if a function is not defined in the source files. This
option is available on the Configuration pane under the Inputs & Stubbing node.

Settings
Default: Off

41 0On
Polyspace displays a list of undefined functions and stops verification.
Off

Polyspace stubs all undefined functions.

Tips
Use this option when:
* The code you are verifying must be complete. This option allows you to find functions

that are not defined in your source.

* You prefer to stub undefined functions manually.

Command-Line Information

Parameter: -no-automatic-stubbing

Default: Off

Example: polyspace-code-prover-nodesktop -sources filename -no-
automatic-stubbing

See Also
“Functions to stub (C)” | “Functions to stub (C++)” | “No STL stubs (C++)”

Related Examples

. “Specify Analysis Options”

. “Specify Functions to Stub Automatically”
. “Constrain Data with Stubbing”

No automatic stubbing (C/C++)

More About

“Stubbing Overview”

“When to Provide Function Stubs”

“Stubbing Examples”

1-77

1 Option Descriptions

Functions to stub (C)

Specify functions that you want the software to stub. This option is available on the
Configuration pane under the Inputs & Stubbing node.

Settings

Default: None

Click I:II.II:I to add a field. Enter function name.

Command-Line Information

Parameter: -functions-to-stub

Default: None

Value: functioni[,function2[,...1]

Example: polyspace-code-prover-nodesktop -sources file name -
functions-to-stub function_1,function_2

See Also

“No automatic stubbing (C/C++)” | “Variable/function range setup (C/C++)” on page 1-72
| “Functions to stub (C++)”

Related Examples

. “Specify Analysis Options”

. “Specify Functions to Stub Automatically”
. “Constrain Data with Stubbing”

More About

. “Stubbing Overview”
. “When to Provide Function Stubs”
. “Stubbing Examples”

1-78

Respect types in fields (C/C++)

Respect types in fields (C/C++)

Specify that structure fields not declared initially as pointers will not be cast to pointers
later. This option is available on the Configuration pane under the Verification
Assumptions node.

Settings
Default: Off

4/ On
The verification assumes that structure fields not declared initially as pointers will
not be cast to pointers later.

For instance, in the following code, the structure field S1.x1 is not declared as a
pointer. However, it is cast to a pointer and used to point to y. If you select this
option, the line assert(y==0); causes a green User assertion check even though y
is assigned a value of 1 through S1.x1.

struct {
unsigned x1;
unsigned x2;
} S1;

void funct2(void) {

int *tmp;

int y;

((Gnt*)&S1)[0] = &y; /* S1.x1 points toy */
tmp = (Iint*)S1.x1

y=0;
tmp = 1; / Write 1 toy */
assert(y==0);

T

Off

The verification assumes that structure fields can be cast to pointers even when they
are not declared as pointers.

Command-Line Information
Parameter: -respect-types-in-fields

1-79

1 Option Descriptions

Default: Off

See Also

“Respect types in global variables (C/C++)”

Related Examples
. “Specify Analysis Options”

1-80

Respect types in global variables (C/C++)

Respect types in global variables (C/C++)

Specify that global variables not declared initially as pointers will not be cast to pointers
later. This option is available on the Configuration pane under the Verification
Assumptions node.

Settings
Default: Off

4/ On
The verification assumes that global variables not declared initially as pointers will
not be cast to pointers later.

For instance, in the following code, the variable X is not declared as a pointer.
However, it is cast to a pointer and used to point to y. If you select this option, the
line assert(y==0); causes a green check even though y is assigned a value of 1
through x.

int x;
void tl(void) {

int y;

int *tmp = &x;

*tmp = (int)&y;

y=0;

(int)x = 1; // x contains address of y
assert (y == 0);

}

Off

The verification assumes that global variables can be cast to pointers even when they
are not declared as pointers.

Command-Line Information
Parameter: -respect-types-in-globals
Default: Off

See Also
“Respect types in fields (C/C++)”

1-81

1 Option Descriptions

Related Examples
. “Specify Analysis Options”

1-82

Ignore float rounding (C/C++)

Ignore float rounding (C/C++)

Specify that operations involving Float and double variables do not involve

rounding. This option is available on the Configuration pane under the Verification
Assumptions node.

Settings
Default: Off

¥ On

The verification considers that operations involving Float and double variables do
not involve rounding.

Off

The verification assumes that results of operations involving float and double are
rounded to the nearest value according to the IEEE 754 standard:

* Simple precision on 32-bit targets

* Double precision on 64-bit targets

Command-Line Information

Parameter: —ignore-float-rounding
Default: Off

Related Examples
. “Specify Analysis Options”

1-83

1 Option Descriptions

Green absolute address checks (C/C++)

1-84

Specify that absolute addresses in your code are valid addresses. This option is available
on the Configuration pane under the Verification Assumptions node.

Settings
Default: Off

¥ On
The verification assumes that the absolute addresses in your code are valid.
Off

The verification generates an orange Absolute Address check when an absolute
address is assigned to a pointer. The orange check occurs because the software does
not have information about the absolute address and cannot verify, for example, the
validity of the address and the availability of memory.

Tips

Even if you use this option, you cannot assign an absolute address to a pointer and
perform pointer arithmetic using the pointer. As soon as you perform pointer arithmetic,
Polyspace cannot verify the validity of the next dereference using this pointer

Command-Line Information

Parameter: -green-absolute-address-checks
Default: Off

See Also

“Absolute address”

Related Examples
. “Specify Analysis Options”

Ignore overflowing computations on constants (C/C++)

Ignore overflowing computations on constants (C/C++)

Specify that the verification must allow overflow in computations involving constants.
For instance, char x = OxFf; causes an overflow according to the ANSI C standard.
However, if you use this option, Polyspace considers that this statement is equivalent to
char x = -1;. This option is available on the Configuration pane under the Check
Behavior node.

Settings
Default: Off

Y| On
The verification allows overflows in computations involving constants.

Off

If an overflow occurs in computations involving constants, the verification generates
an Overflow error.

Tips

* This option applies to computations involving compile-time constants only. For
instance, the statement char x = (rand() ? OxFF:0xFE); causes an Overflow
error irrespective of whether the option is used because the value of X is not known at
compile-time.

Command-Line Information
Parameter: -ignore-constant-overflows
Default: Off

See Also

“Overflow”

Related Examples
. “Specify Analysis Options”

1-85

1 Option Descriptions

Allow negative operand for left shifts (C/C++)

1-86

Specify that the verification must allow shift operations on a negative number. Unless
you use this option, following ANSI C standard, the verification generates an error for
the shift operations. This option is available on the Configuration pane under the
Check Behavior node.

Settings
Default: Off

¥/ On

The verification allows shift operations on a negative number, for instance, -2 << 2.

Off

If a shift operation is performed on a negative number, the verification generates an
error.

Command-Line Information
Parameter: -al low-negative-operand-in-shift
Default: Off

See Also

“Shift operations”

Related Examples
. “Specify Analysis Options”

Detect overflows (C/C++)

Detect overflows (C/C++)

Specify integer overflows to check for. This option is available on the Configuration
pane under the Check Behavior node.

Settings
Default: signed

signed
The verification checks for overflows in computations involving signed integers alone.
This behavior conforms to the ANSI C (ISO® C++) standard.
signed-and-unsigned
The verification checks for overflows in all integer computations. This behavior is
stricter than the ANSI C (ISO C++) standard.
none

The verification does not check for integer overflows. If a computed value exceeds
the range of its type, the value is wrapped. For instance, in the following code, X is
wrapped to 0 after the sum.

unsigned char Xx;
=2

+ Following an overflow, unless you select none, Polyspace can either wrap the result or
restrict it to its extremum value. Use Overflow computation mode to specify how
the verification handles results of an overflow.

+ Use the option signed-and-unsigned if you are computing the size of a buffer
from unsigned integers. Using this option helps you detect an overflow at the buffer
computation stage. Otherwise, you might see an error later due to insufficient buffer.

+ If you use the option signed-and-unsigned, Polyspace does not produce an
overflow error on bitwise NOT operations if you cast the result of the operation back
to the operand type. For instance, Polyspace does not produce an overflow error on
(uint8_t) (~var) where var is of type uint8_t.

1-87

1 Option Descriptions

Command-Line Information

Parameter: -scalar-overflows-checks

Value: signed | signed-and-unsigned | none

Default: signed

Example: polyspace-code-prover-nodesktop -sources file name -scalar-
overflows-checks signed

See Also

“Overflow” | “Overflow computation mode (C/C++)”

Related Examples
. “Specify Analysis Options”

. “Detect Overflows in Buffer Size Computation”

1-88

Detect Overflows in Buffer Size Computation

Detect Overflows in Buffer Size Computation

If you are computing the size of a buffer from unsigned integers, for the Detect
overflows option, use signed-and-unsigned. Using this option helps you detect an
overflow at the buffer computation stage. Otherwise, you might see an error later due to
insufficient buffer. This option is available on the Configuration pane under the Check
Behavior node.

For this example, save the following C code in a file display.c:

#include <stdlib_h>
#include <stdio.h>

int get_value(void);

void display(unsigned int num_items) {
int *array;
array = (int *) malloc(num_items * sizeof(int)); // overflow error
if (array) {
for (unsigned int ctr = 0; ctr < num_items; ctr++) {
array[ctr] = get_value(Q);
}
for (unsigned int ctr = 0; ctr < num_items; ctr++) {
printf(""Value is %d.\n", ctr, array[ctr]);
}
free(array);
}
}

void main() {
display(33000);

—r

Create a Polyspace project and add display.c to the project.

2 On the Configuration pane, select the following options:

Target & Compiler: From the Target processor type drop-down list, select a
type with 16-bit int such as c167.

* Check Behavior: From the Detect overflows drop-down list, select signed.

3 Run the verification and open the results.

1-89

1 Option Descriptions

1-90

Polyspace detects an orange Illegally dereferenced pointer error on the line
array[ctr] = get_value() and a red Non-terminating loop error on the for
loop.

This error follows from an earlier error. For a 16-bit int, there is an overflow on the
computation num_items * sizeof(int). Polyspace does not detect the overflow
because it occurs in computation with unsigned integers. Instead Polyspace wraps
the result of the computation causing the Illegally dereferenced pointer error
later.

From the Detect overflows drop-down list, select signed-and-unsigned.

Polyspace detects a red Overflow error in the computation num_items *
sizeof(int).

See Also

“Detect overflows (C/C++)” | “Overflow” | “Illegally dereferenced pointer”

Overflow computation mode (C/C++)

Overflow computation mode (C/C++)

Specify whether Polyspace must wrap the result of an integer overflow or restrict it to its
extremum value. This option is available on the Configuration pane under the Check
Behavior node.

Settings
Default: truncate-on-error

truncate-on-error

If the Overflow check on an operation is:

* Red, Polyspace does not analyze the remaining code in the current scope.
* Orange, Polyspace analyzes the remaining code in the current scope. However,
Polyspace considers that:
+ After a positive Overflow, the result of the operation has an upper bound.
This upper bound is the maximum value allowed by the type of the result.
After a negative Overflow, the result of the operation has a lower bound. This
lower bound is the minimum value allowed by the type of the result.

wrap-around

Polyspace analyzes the remaining code in the current scope even after a red integer
Overflow. However, Polyspace wraps the result of the overflow. For instance, if you
choose this option:

* In the following code, after the red Overflow, Polyspace considers that I has a
value -2°.

#include<stdio.h>

void main(Q) {
int 1=1;

i =1 << 30;

i =10 *2;
printf('%d"”,i);
}

1-91

1 Option Descriptions

+ In the following code, before the orange Overflow, i has values in the range
[1-. 231—1]. But, after the orange Overflow, Polyspace considers that i has even
values in the range [-2*"..2] or [2..2*-2].

#include<stdio.h>
int getval();

void main() {
int i=getvVal();
if(i>0) {
1 = 1*2;
printf("%d™”,1);
}
}

Command-Line Information

Parameter: -scalar-overflows-behavior
Value: wrap-around | truncate-on-error
Default: truncate-on-error

Example: polyspace-code-prover-nodesktop -sources file name -scalar-
overflows-behavior wrap-around

See Also

“Overflow”

Related Examples
. “Specify Analysis Options”

1-92

Enable pointer arithmetic across fields (C)

Enable pointer arithmetic across fields (C)

Specify that a pointer assigned to a structure field can point outside its bounds as long as
it points within the structure. This option is available on the Configuration pane under
the Check Behavior node.

Settings
Default: Off

¥/ On

A pointer assigned to a structure field can point outside the bounds imposed by
the field as long as it points within the structure. For instance, in the following
code, unless you use this option, the verification will produce a red 11 legally
dereferenced pointer check:

void main(void) {

struct S {char a; char b; int c;} X;

char *ptr = &x.b;

ptr ++;

*ptr = 1; // Red on the dereference, because ptr points outside x.b

}
Off

A pointer assigned to a structure field can point only within the bounds imposed by
the field.

Tips

* The verification does not allow a pointer with negative offset values. This behavior
occurs irrespective of whether you choose the option Enable pointer arithmetic
across fields.

Command-Line Information

Parameter: -al low-ptr-arith-on-struct

Default: Off

Example: polyspace-code-prover-nodesktop -sources file name -allow-
ptr-arith-on-struct

1-93

1 Option Descriptions

See Also

“Tllegally dereferenced pointer”

Related Examples
. “Specify Analysis Options”

1-94

Allow incomplete or partial allocation of structures (C)

Allow incomplete or partial allocation of structures (C)

Specify that the verification must allow partial allocation of memory for structures. This
option is available on the Configuration pane under the Check Behavior node.

Settings
Default: Off

¥ On

The verification must allow partial allocation of memory for structures. Such partial
allocation can occur during type-casting from a smaller type.

For instance, using this option, in the following code, the verification must produce a
red Il1legally dereferenced pointer check only on the third assignment in the
i T statement.

#include <stdlib.h>

typedef struct _little { int a; int b; } LITTLE;
typedef struct _big { int a; int b; int c; } BIG;

void main(void) {
BIG *p = malloc(sizeof(LITTLE));

if (p'= ((void *) 0)) {
p->a = 0 ;
p—>b = 0 ;
p->c = 0 // Red IDP check
}
}
Off

The verification must require complete allocation of memory for structures.
For instance, without the option, in the above code, the verification must produce a

red 11 legally dereferenced pointer check on the first assignment in the i f
statement.

1-95

1 Option Descriptions

Tips

The verification also allows partial allocation of structures when you select Enable
pointer arithmetic across fields or Precision > Retype variables of pointer
types.

Command-Line Information

Parameter: -size-in-bytes

Default: Off

Example: polyspace-code-prover-nodesktop -sources file name -size-in-
bytes

See Also

“Illegally dereferenced pointer”

Related Examples
. “Specify Analysis Options”

1-96

Permissive function pointer calls (C)

Permissive function pointer calls (C)

Specify that the verification must allow function pointer calls where the type of the
function pointer does not match the type of the function. This option is available on the
Configuration pane under the Check Behavior node.

Settings
Default: Off

¥/ On

The verification must allow function pointer calls where the type of the function
pointer does not match the type of the function. For instance, a function declared as
int £(int*) can be called by a function pointer declared as int fptr(void*).

Off

The verification must require that the argument and return types of a function
pointer and the function it calls are identical.

Tips

* With sources that use function pointers extensively, enabling this option can cause
loss in performance. This loss occurs because the verification has to consider more
execution paths.

Command-Line Information

Parameter: —-permissive-function-pointer

Default: Off

Example: polyspace-code-prover-nodesktop -sources file name -
permissive-function-pointer

Related Examples
. “Specify Analysis Options”

1-97

1 Option Descriptions

Detect uncalled functions (C/C++)

1-98

Detect functions that are not called directly or indirectly from main or another entry

point during run-time. This option is available on the Configuration pane under the
Check Behavior node.

Settings
Default: none

none

The verification does not generate checks for uncalled functions.
never-called

The verification generates checks for functions that are defined but not called.
called-from-unreachable

The verification generates checks for functions that are defined and called from an
unreachable part of the code.

all

The verification generates checks for functions that are:

* Defined but not called

* Defined and called from an unreachable part of the code.

Command-Line Information
Parameter: —-uncal led-function-checks

Value: none | never-called | called-from-unreachable | all
Default: none

Example: polyspace-code-prover-nodesktop -sources file name -
uncal led-function-checks all

See Also

“Function not called” | “Function not reachable”

Related Examples
. “Specify Analysis Options”

Precision level (C/C++)

Precision level (C/C++)

Specify the precision level that the verification must use. Higher precision leads to
greater number of proven results but also requires more verification time. Each precision
level corresponds to a different algorithm used for verification. This option is available on
the Configuration pane under the Precision node.

Settings

Default: 2

0
This option corresponds to a static interval verification.

1
This option corresponds to a complex polyhedron model of domain values.

2
This option corresponds to more complex algorithms closely modelling domain values.
The algorithms combine both complex polyhedrons and integer lattices.

3
This option is only suitable for code having less than 1000 lines. Using this option,
the percentage of proven results can be very high.

Tips

For best results in reasonable time, use the default level 2. If the verification takes a long
time, reduce precision. However, the number of unproven checks can increase. Likewise,
to reduce orange checks, you can improve your precision. But the verification can take
significantly longer time.

Command-Line Information

Parameter: -00 | -01 | -02 | -03

Default: -02

Example: polyspace-code-prover-nodesktop -sources file name -01

See Also

“Verification level (C)”

1-99

1 Option Descriptions

Related Examples
. “Specify Analysis Options”

. “Improve Verification Precision”

1-100

Verification level (C)

Verification level (C)

Specify the number of times the Polyspace verification process runs on your source code.
Each run can lead to greater number of proven results but also requires more verification
time. This option is available on the Configuration pane under the Precision node.

Settings
Default: Software Safety Analysis level 2

C Source Compliance Checking
Polyspace completes coding rules checking at the end of the compilation phase.
Software Safety Analysis level 0
The verification process runs once on your source code.
Software Safety Analysis level 1
The verification process runs twice on your source code.
Software Safety Analysis level 2

The verification process runs thrice on your source code. Use this option for most
accurate results in reasonable time.

Software Safety Analysis level 3

The verification process runs four times on your source code.
Software Safety Analysis level 4

The verification process runs five times on your source code.
other

If you use this option, Polyspace verification will make 20 passes unless you stop it
manually.

Tips

+ Use a higher verification level for fewer orange checks.

Difference between Level 0 and 1

The following example illustrates the difference between Software Safety
Analysis level 0 and Software Safety Analysis level 1:

1-101

1 Option Descriptions

Software Safety Analysis Level O

Software Safety Analysis Level 1

#include <stdlib.h>

void ratio (float x, float *y)

{
}*y=(abs(x—*y))/(x+*y);

void levell (Ffloat x,
float y, float *t)

{ float v;

vV = Yy;

ratio (X, &y);

*t = 1.0/(v - 2.0 * X);

}
float level2(float v)
{

float t;

t = v;

levell1(0.0, 1.0, &t);
return t;
}

void main(void)

float r,d;

d= level2(1.0);

r =1.0/7 (2.0 - d);
}

#include <stdlib.h>

void ratio (float x, float *y)

{
}*y= (@bs(x-*y))/ (x+*y);

void levell (float x,
float y, float *t)
{ float v;
vV = y;
ratio (X, &y);
*t = 1.0/(v - 2.0 * x);

s
float level2(float v)
{

float t;

t = v;

levell1(0.0, 1.0, &t);
return t;
s

void main(void)

float r,d;

d= level2(1.0);

r =1.0 /7 (2.0 - d);
}

In the table, verification produces an orange Division by Zero check during level
0 verification. The check turns green during level 1. The verification acquires more
precise knowledge of X in the higher level.

* For best results, use the option Software Safety Analysis level 2. Ifthe
verification takes too long, use a lower Verification level. Fix red errors and gray
code before rerunning the verification with higher verification levels.

+ Use the option Other sparingly since it can increase verification time by an
unreasonable amount. Using Software Safety Analysis level 2 provides
optimal verification of your code in most cases.

1-102

Difference between Level 0 and 1

Dependency

You cannot use the C Source Compliance Checking setting with batch or interactive
mode.

Command-Line Information
Parameter: -to

Value: c-compile | passO | passl | pass2 | pass3 | pass4 | other
Default: pass2

Example: polyspace-code-prover-nodesktop -sources file name -to pass2

Related Examples
. “Specify Analysis Options”

. “Improve Verification Precision”

1-103

1 Option Descriptions

Verification time limit (C/C++)

Specify a time limit for the verification in hours. If the verification does not complete
within that limit, it stops. This option is available on the Configuration pane under the
Precision node.

Settings

Enter the time in hours. For fractions of an hour, specify decimal form.
Command-Line Information

Parameter: -timeout

Value: time

Example: polyspace-code-prover-nodesktop -sources file name -timeout
5.75

Related Examples

. “Specify Analysis Options”

. “Improve Verification Precision”

1-104

Retype variables of pointer types (C)

Retype variables of pointer types (C)

Specify that the verification must allow pointers to be cast from one type to another. If
you select this option, the verification replaces the original type of the pointer by its new
type. This option is available on the Configuration pane under the Precision node.

Settings
Default: Off

¥/ On

The verification allows pointers to be cast from one type to another. It replaces the
original type of the pointer by its new type. For instance, using this option, the
software produces a green check on the assert statement in the following code:
struct A {int a; char b;} s = {1,2};

char *tmp = (char *)&s;

struct A *pa = (struct A*)tmp;

assert((pa->a == 1) && (pa->b == 2));

Off

The verification retains the declaration type of a pointer even when it is recast.

Command-Line Information

Parameter: -retype-pointer

Default: Off

Example: polyspace-code-prover-nodesktop -sources file name -retype-
pointer

See Also

“Enable pointer arithmetic across fields (C)” | “Allow incomplete or partial allocation of
structures (C)”

Related Examples
. “Specify Analysis Options”

1-105

1 Option Descriptions

Retype symbols of integer types (C)

Specify that the verification must allow integers to be cast to pointers. This option is
available on the Configuration pane under the Precision node.

Settings
Default: Off

¥ On

The verification allows integers to be cast to pointers. For instance, using this option,
the software can prove the assert statements in the following code:

void function(void)

struct S1 {
int x;
int y;
int z;
char t;
} sl ={1,2,3,4};
int addr;
addr = (int)(&sl);
assert(((struct S1 *)addr)->y == 2);

Off

The verification does not allow integers to be cast to pointers.

Dependencies
This option:

+ Automatically enables Check Behavior > Allow incomplete or partial allocation
of structures.

* Has no effect on global integers if you select the option Verification Assumptions >
Respect types in global variables.

* Has no effect on integers that are structure fields if you select the option
Verification Assumptions > Respect types in fields.

1-106

Retype symbols of integer types (C)

Tips
+ Use this option for:

+ Code with memory mapping

Code close to the communication layer API — When your code contains low level
drivers, it tends to perform generic pointer casts using (void *).

+ If you set this option:

Some of the 11 legally dereferenced pointer checks can change

Some of the Non-initialized variable checks can change to Non-
initialized pointer checks.

Command-Line Information

Parameter: -retype-int-pointer

Default: Off

Example: polyspace-code-prover-nodesktop -sources file name -retype-
int-pointer

See Also

“Tllegally dereferenced pointer”

Related Examples
. “Specify Analysis Options”

1-107

1 Option Descriptions

Sensitivity context (C/C++)

1-108

Specify that the software must store call context information during verification. If a
function contains a red and green check in the same line for two different invocations,
both checks will be displayed. This option is available on the Configuration pane under
the Precision node.

Settings
Default: none

none
The software does not store call context information for functions.
auto
The software stores call context information for checks in the following functions:
+ Functions that form the leaves of the call tree. These functions are called by other
functions, but do not call functions themselves.
* Small functions. The software uses an internal threshold to determine whether a

function is small.

custom

The software stores call context information for functions that you specify. Click o
to enter the name of a function.

Command-Line Information

Parameter: -context-sensitivity

Value: functioni[,function2,...]

Default: none

Example: polyspace-code-prover-nodesktop -sources file name -context-
sensitivity myFuncl,myFunc2

To allow the software to decide which functions receive call context storage, use the
option -context-sensitivity-auto.

Related Examples
. “Specify Analysis Options”

Sensitivity context (C/C++)

“Identify Function Call Causing Orange Check”

“Improve Verification Precision”

1-109

1 Option Descriptions

Improve precision of interprocedural analysis (C/C++)

1-110

Use this option to propagate greater information about function arguments into
the called function. This option is available on the Configuration pane under the
Precision node.

Settings
Default: Off

Enter 0 to turn off this option and 1 to turn it on. Turning on this option leads to greater
number of proven results, but also increases verification time.

Tips

+ Using this option, you can prove maximum possible number of results when the
Verification level is set to Software Safety Analysis level 2. Therefore, you
can save on the number of passes that the verification takes on your code.

+ Using this option, you can increase the verification time enormously within a certain
pass. Therefore, use this option only when you have less than 1000 lines of code.

Command-Line Information

Parameter: —-path-sensitivity-delta

Value: Positive integer

Example: polyspace-code-prover-nodesktop -sources file name -path-
sensitivity-delta 1

Related Examples
. “Specify Analysis Options”

. “Improve Verification Precision”

Specific precision (C)

Specific precision (C)

Specify source files that you want to verify at a Precision level higher than that for
the entire verification. This option is available on the Configuration pane under the
Precision node.

Settings
Default: All files are verified with the precision you specified using Precision >

Precision level.

Click o to enter the name of a file and the corresponding precision level.

Command-Line Information

Parameter: -modules-precision

Value: file:00 | file:01 | file:02 | file:03

Example: polyspace-code-prover-nodesktop -sources file name -01 -
modules-precision My File.c:02

See Also

“Precision level (C/C++)”
Related Examples

. “Specify Analysis Options”

. “Improve Verification Precision”

1-111

1 Option Descriptions

Optimize large static initializers (C)

1-112

Specify that the verification must approximate statically initialized int, float and
char arrays if required. If you do not specify this option, for static initialization of large
arrays, scaling problems can occur during the compilation phase. This option is available
on the Configuration pane under the Scaling node.

Settings
Default: Off

¥ On

The verification approximates statically initialized int, Float and char arrays if
required. Using this option can speed up verification, but can decrease precision for
some applications.

Off

The verification does not approximate statically initialized int, float and char
arrays.

Command-Line Information

Parameter: -no-fold

Default: Off

Example: polyspace-code-prover-nodesktop -sources file name -no-fold

Related Examples
. “Specify Analysis Options”

Reduce task complexity (C)

Reduce task complexity (C)

Specify that the verification must use a slightly less precise model than default for
interaction between tasks. This option is available on the Configuration pane under the
Scaling node.

Settings
Default: Off

¥/ On

The verification uses a slightly less precise model than default for interaction
between tasks. Using this option, you can speed up verification, but have greater
number of unproven results. There is also a loss of precision when variables shared
between tasks are read through pointers.

Off

The verification uses the default model for interaction between tasks.

Command-Line Information

Parameter: -1 ightweight-thread-model
Default: Off

See Also
“Entry points (C/C++)”

Related Examples

. “Specify Analysis Options”

. “Reduce Verification Time”

1-113

1 Option Descriptions

Inline (C)

1-114

Specify the functions that the verification must clone for every function call. For instance,
if you specify the function func for inlining and func is called twice, the software
creates two copies of func for verification. The copies are named using the convention
func_pst_inlined_ver where ver is the version number. This option is available on
the Configuration pane under the Scaling node.

Settings

Default: No function is inlined.

Click I:II-II:I to enter function name.

Tips
+ Use this option to identify the cause of a Non-terminating call error.

Situation: Sometimes, a red Non-terminating call check can appear on a
function call though a red check does not appear in the function body. The function
body represents all calls to the function. Therefore, if some calls to a function do
not cause an error, an orange check appears in the function body.

+ Action: If you use this option, for every function call, there is a corresponding
function body. Therefore, you can trace a red check on a function call to a red check
in the function body.

+ Using this option can sometimes duplicate a lot of code and lead to scaling problems.
Therefore choose functions to inline carefully.

+ Choose functions to inline based on hints provided by the alias verification.
+ Do not use this option for entry point functions, including main.

+ Using this option can increase the number of gray Unreachable code checks.

For example, in the following code, if you enter max for Inline, you obtain two
Unreachable code checks, one for each call to max.

int max(int a, int b) {
return a > b ? a : b;

}

Inline (C)

void main() {
int i=3, j=1, k;
k=max(i,j);
i=0;
k=max(i,j);
}
+ If you use the keyword inline before a function definition, place the definition in a
header file and call the function from multiple source files, you have the same result
as using the option Inline.

Command-Line Information
Parameter: -inline

Value: functioni[,function2[,...1]
Default: None

Example: polyspace-code-prover-nodesktop -sources file name -inline
funcl, func2

Related Examples
. “Specify Analysis Options”

. “Reduce Procedure Complexity”

1-115

1 Option Descriptions

Depth of verification inside structures (C/C++)

1-116

Specify a limit to the depth of analysis for nested structures. This option is available on
the Configuration pane under the Scaling node.

Settings
Default: Full depth of nested structures is analysed.

Enter a number to specify the depth of analysis for nested structures. For instance, if you
specify 0, the analysis does not verify a structure inside a structure.

Command-Line Information

Parameter: -k-limiting

Value: positive integer

Default: polyspace-code-prover-nodesktop -sources file name -k-
limiting 1

Related Examples
. “Specify Analysis Options”

Generate report (C/C++)

Generate report (C/C++)

Specify whether to generate a report after the analysis. This option is available on the
Configuration pane under the Reporting node.

Depending on the format you specify, you can view this report using an external
software. For example, if you specify the format PDF, you can view the report in a pdf
reader.

Settings
Default: Off

¥/ On

Polyspace generates an analysis report using the template and format you specify.

Off

Polyspace does not generate an analysis report. You can still view your results in the
Polyspace interface.

Tips

* To generate a report after an analysis is complete, select Reporting > Run Report.
Alternatively, at the command line, use the command polyspace-report-
generator with the options —template and -format.

Command-Line Information
There is no command-line option to solely turn on the report generator. However, using

the options —-report-template for template and -report-output-format for output
format automatically turns on the report generator.

See Also
“Report template (C/C++)” | “Output format (C/C++)”

Related Examples
. “Specify Analysis Options”

1-117

1 Option Descriptions

. “Generate Report from User Interface”
. “Generate Report from Command Line”

. “Open Report”

1-118

Report template (C/C++)

Report template (C/C++)

Specify template for generating analysis report. This option is available on the
Configuration pane under the Reporting node.

-rpt files for the report templates are available in the folder
MATLAB_Install\polyspace\toolbox\psrptgen\templates\.

Settings
Default: Developer

CodeMetrics

The report contains a summary of code metrics, followed by the complete metrics for
an application.

CodingRules

For C code, the report lists information about compliance with:
+ MISRA C rules
+ MISRA AC AGC rules

* Custom coding rules
For C++ code, the report lists information about compliance with:

+ MISRA C++ rules
* JSF® C++ rules

+ Custom coding rules

This report also contains the Polyspace configuration settings for the analysis.
Developer

The report lists information useful to developers, including:

* Summary of results

* Coding rule violations

+ List of proven run-time errors or red checks

+ List of unproven run-time errors or orange checks

* List of unreachable procedures or gray checks

1-119

1 Option Descriptions

The report also contains the Polyspace configuration settings for the analysis.
DeveloperReview
The report lists the same information as the Developer report. However, the

reviewed results are sorted by review classification and status, and unreviewed
results are sorted by file location.

Developer_withGreenChecks
The report lists the same information as the Developer report. In addition, the
report lists code proven to be error-free or green checks.

Quality

The report lists information useful to quality engineers, including:

* Summary of results
+ Statistics about the code

* Graphs showing distributions of checks per file

The report also contains the Polyspace configuration settings for the analysis.
SoftwareQualityObjectives

The report lists information useful to quality engineers and available on the
Polyspace Metrics interface, including:

Information about whether the project satisfies quality objectives

* Time taken in each phase of verification

Metrics about the whole project. For each metric, the report lists the quality
threshold and whether the metric satisfies this threshold.

Coding rule violations in the project. For each rule, the report lists the number of
violations justified and whether the justifications satisfy quality objectives.
Definite as well as possible run-time errors in the project. For each type of

run-time error, the report lists the number of errors justified and whether the
justifications satisfy quality objectives.

The appendices contain further details of Polyspace configuration settings, code
metrics, coding rule violations, and run-time errors.

SoftwareQualityObjectives_Summary

The report contains the same information as the SoftwareQualityObjectives
report. However, it does not have the supporting appendices with details of code
metrics, coding rule violations and run-time errors.

1-120

Report template (C/C++)

Dependencies

* This option is enabled only if you select the Generate report box.
* The templates SoFtwareQualityObjectives and
SoftwareQualityObjectives Summary are available only if you generate a report
from results downloaded from the web interface. To generate these reports:
1 Download results from the Polyspace Metrics interface.
2 In the Results Manager perspective, select Reporting > Run Report.
3 Select the template that you want.

Command-Line Information
Parameter: -report-template
Value: template.rpt

Default: Developer.rpt

Example: polyspace-code-prover-nodesktop -sources file name -report-
template Developer.rpt

See Also

“Generate report (C/C++)” | “Output format (C/C++)”

Related Examples

. “Specify Analysis Options”

. “Generate Report from User Interface”
. “Generate Report from Command Line”
. “Open Report”

. “Customize Report Templates”

1-121

1 Option Descriptions

Output format (C/C++)

Specify output format of generated report. This option is available on the Configuration
pane under the Reporting node.

Settings
Default: RTF
RTF

Generate report in . rtf format
HTML
Generate report in .html format
PDF
Generate report in . pdf format
Word
Generate report in .doc format. Not available on UNIX® platforms.
XML

Generate report in .xml format.

Tips

* You must have Microsoft Office installed to view . rtf format reports containing
graphics, such as the Qual ity report.

+ If the table of contents or graphics in a .doc report appear outdated, select the
content of the report and refresh the document. Use keyboard shortcuts Ctrl+A to
select the content and F9 to refresh it.

Dependencies

This option is enabled only if you select the Generate report box.

Command-Line Information
Parameter: -report-output-format

1-122

Output format (C/C++)

Value: RTF | HTML | PDF | Word | XML
Default: RTF

Example: polyspace-code-prover-nodesktop -sources file name -report-
output-format pdf

See Also

“Generate report (C/C++)” | “Report template (C/C++)”

Related Examples

. “Specify Analysis Options”

. “Generate Report from User Interface”
. “Generate Report from Command Line”
. “Open Report”

. “Customize Report Templates”

1-123

1 Option Descriptions

Batch (C/C++)

Enable or disable batch remote analysis. This option is available on the Configuration
pane under the Distributed Computing node.

For batch remote analysis, you need:

Polyspace and MATLAB® Distributed Computing Server™ on the cluster
+ MATLAB, Polyspace and Parallel Computing Toolbox™ on your local computer

Settings
Default: Off

¥/ On

Run batch analysis on a remote computer. In this remote analysis mode, the analysis
is queued on a cluster after the compilation phase. Therefore, on your local computer,
after the analysis is queued:

If you are running the analysis from the Polyspace user interface, you can close
the user interface.

If you are running the analysis from the command line, you can close the

command-line window.

You can manage the queue from the Polyspace Job Monitor. To use the Polyspace Job
Monitor:

* In the Polyspace user interface, select Tools > Open Job Monitor.

On the DOS or UNIX command line, use the polyspace-jobs-manager

command. For more information, see “Manage Remote Analyses at the Command
Line”.

* On the MATLAB command line, use the “polyspaceJobsManager” function.

After the analysis, you might have to manually download the results from the
cluster.

Off

Do not run batch analysis on a remote computer.

1-124

Batch (C/C++)

Dependency

You cannot use Batch mode with the Verification Level options C source
compliance checking or C++ source compliance checking.

Command-Line Information

To run a remote verification from the command line, use with the -scheduler option.
Parameter: —batch

Value: -scheduler host _name if you have not set the Job scheduler host name in
the Polyspace user interface

Default: Off

Example: polyspace-code-prover-nodesktop -batch -scheduler NodeHost
polyspace-code-prover-nodesktop -batch -scheduler MJSName@NodeHost

See Also

“Add to results repository (C/C++)” on page 1-126 | —interactive | -scheduler
Related Examples

. “Specify Analysis Options”
. “Set Up Remote Verification and Analysis”

1-125

1 Option Descriptions

Add to results repository (C/C++)

Specify upload of analysis results to the Polyspace Metrics results repository, allowing
Web-based reporting of results and code metrics. This option is available on the
Configuration pane under the Distributed Computing node.

Settings
Default: Off

¥/ On

Analysis results are stored in the Polyspace Metrics results repository. This allows
you to use a Web browser to view results and code metrics.

Off

Analysis results are stored locally.

Dependency

This option is only available for remote verifications. For local verification, you can
manually upload your results to Polyspace Metrics by right-clicking on your results file
and selecting Upload to Metrics.

Command-Line Information

Parameter: -add-to-results-repository

Default: Off

Example: polyspace-code-prover-nodesktop -batch -scheduler NodeHost -
add-to-results-repository

See Also

“Set Up Remote Verification and Analysis” | “Set Up Polyspace Metrics” | “Set Up
Verification to Generate Metrics” | “Batch (C/C++)” on page 1-124

1-126

Command/script to apply affer the end of the code verification (C/C++)

Command/script to apply after the end of the code verification (C/

C++)

Specify a command or script to be executed after the verification. This option is available
on the Configuration pane under the Advanced Settings node.

Settings

Default: None

Enter full path to the command or script, or click o navigate to the location of the
command or script. For example, you can enter the path to a script that sends an email.
After the verification, this script will be executed.

Command-Line Information

Parameter: -post-analysis

Value: Path to executable file or command in quotes

Default: None

Example: polyspace-code-prover-nodesktop -sources file name -post-
analysis-command ~“pwd~/send_email

Related Examples
. “Specify Analysis Options”

1-127

1 Option Descriptions

Automatic Orange Tester (C)

1-128

Specify that the Automatic Orange Tester must be executed at the end of the verification.
This option is available on the Configuration pane under the Advanced Settings
node.

You must select this option before verification if you want to run the Automatic Orange
Tester after verification. During verification, Polyspace generates additional source
code that tests each orange check for run-time errors. The software compiles this
instrumented code. When you run the Automatic Orange Tester later, the software tests
the resulting binary code.

Settings
Default: Off

Y| On

After verification, when you run the Automatic Orange Tester, Polyspace creates
tests for unproven code and runs them.

Off

You cannot launch the Automatic Orange Tester after verification.

Tips
+ To launch the Automatic Orange Tester, after verification, open your results. Select
Tools > Automatic Orange Tester.

* When using the automatic orange tester, you cannot:

+ Select Division round down under Target & Compiler.

Select the options ¢18, tms320c3c. x86_64 or sharc21x61 for Target &
Compiler > Target processor type.

Specify the type char as 16-bit or short as 8-bit using the option mcpu. . .
(Advanced) for Target & Compiler > Target processor type. For the same
option, you must specify the type pointer as 32-bit.

Specify global asserts in the code, having the form Pst_Global _Assert(A,B).
In global assert mode, you cannot use Variable/function range setup under
Inputs & Stubbing.

Automatic Orange Tester (C)

Command-Line Information

Parameter: ~automatic-orange-tester

Default: Off

Example: polyspace-code-prover-nodesktop -sources file name -
automatic-orange-tester

See Also
“Number of automatic tests (C)” | “Maximum loop iterations (C)” | “Maximum test time

(©)

Related Examples
. “Specify Analysis Options”

. “Test Orange Checks for Run-Time Errors”
More About
. “Limitations of Automatic Orange Tester”

1-129

1 Option Descriptions

Number of automatic tests (C)

1-130

Specify number of tests that you want the Automatic Orange Tester to run. The more the
number of tests, the greater the possibility of finding a run-time error, but longer it takes
to complete. This option is available on the Configuration pane under the Advanced
Settings node.

Settings
Default: 500

Enter number of tests up to a maximum of 100,000.

Dependencies

This option is enabled only if you select the Automatic Orange Tester box.

Command-Line Information

Parameter: —-automatic-orange-tester-tests-number

Value: positive integer

Default: 500

Example: polyspace-code-prover-nodesktop -sources file name -
automatic-orange-tester -automatic-orange-tester-tests-number 500

See Also

“Automatic Orange Tester (C)” | “Maximum loop iterations (C)” | “Maximum test time
(C)”

Related Examples
. “Specify Analysis Options”

. “Test Orange Checks for Run-Time Errors”

Maximum loop iterations (C)

Maximum loop iterations (C)

Specify number of loop iterations after which the Automatic Orange Tester considers the
loop to be infinite. Specifying a large number decreases the possibility of identifying an
infinite loop incorrectly, but takes more time to complete. This option is available on the
Configuration pane under the Advanced Settings node.

Settings
Default: 1000

Enter number of loop iterations. The maximum value that the software supports is 1000.

Dependencies

This option is enabled only if you select the Automatic Orange Tester box.

Command-Line Information

Parameter: —~-automatic-orange-tester-loop-max-iteration

Value: positive integer

Default: 1000

Example: polyspace-code-prover-nodesktop -sources file name -
automatic-orange-tester -automatic-orange-tester-loop-max-iteration
500

See Also
“Automatic Orange Tester (C)” | “Number of automatic tests (C)” | “Maximum test time
(C)”

Related Examples

. “Specify Analysis Options”

. “Test Orange Checks for Run-Time Errors”

1-131

1 Option Descriptions

Maximum test time (C)

1-132

Specify time in seconds allowed for a single test. After this time is over, the Automatic
Orange Tester proceeds to the next test. Increasing this time reduces number of tests
that do not complete, but increases total verification time. This option is available on the
Configuration pane under the Advanced Settings node.

Settings
Default: 5

Enter time in seconds. The maximum value that the software supports is 60.

Dependencies

This option is enabled only if you select the Automatic Orange Tester box.

Command-Line Information

Parameter: —~-automatic-orange-tester-timeout

Value: time

Default: 5

Example: polyspace-code-prover-nodesktop -sources file name -
automatic-orange-tester -automatic-orange-tester-test-timeout 10

See Also

“Automatic Orange Tester (C)” | “Number of automatic tests (C)” | “Maximum loop
iterations (C)”

Related Examples
. “Specify Analysis Options”

. “Test Orange Checks for Run-Time Errors”

Other (C)

Other (C)

In this section...

“~extra-flags” on page 1-133
“~c-extra-flags” on page 1-133
“~cfe-extra-flags” on page 1-133
“~il-extra-flags” on page 1-134

Specify special options for C verification, which are provided by MathWorks if required.

-extra-flags

Default:

No extra flags.

Example Shell Script Entry:

polyspace-code-prover-nodesktop -extra-flags -paraml -extra-flags -
param2 \

-extra-flags 10 ...

-c-extra-flags
Default:

No extra flags.

Example Shell Script Entry:

polyspace-code-prover-nodesktop -c-extra-flags -paraml -c-extra-
flags -param2 -c-extra-flags 10

-cfe-extra-flags

Default:

1-133

1 Option Descriptions

No extra flags.

Example Shell Script Entry:

polyspace-code-prover-nodesktop -cfe-extra-flags -parami -cfe-extra-
flags -param2

-1l-extra-flags

Default:

No extra flags.

Example Shell Script Entry:

polyspace-code-prover-nodesktop -il-extra-flags -paraml -il-extra-
flags -param2 -il-extra-flags 10

1-134

Option Descriptions specific to C++
Code

+ “Target processor type (C++)” on page 2-3

+ “Dialect (C++)” on page 2-5

+ “C++11 Extensions (C++)” on page 2-10

+ “Block char16/32_t types (C++)” on page 2-11

* “Enum type definition (C++)” on page 2-12

+ “Pack alignment value (C++)” on page 2-13

* “Ignore pragma pack directives (C++)” on page 2-14

+ “Support managed extensions (C++)” on page 2-15

+ “Import folder (C++)” on page 2-16

+ “Management of scope of 'for loop' variable index (C++)” on page 2-17
+ “Management of wchar_t (C++)” on page 2-18

+ “Set wchar_t to unsigned long (C++)” on page 2-19

+ “Set size_t to unsigned long (C++)” on page 2-20

* “Ignore link errors (C++)” on page 2-21

* “Check MISRA C++ rules” on page 2-22

* “Check JSF C++ rules” on page 2-24

* “Files and folders to ignore (C++)” on page 2-26

+ “Main entry point (C++)” on page 2-28

+ “Verify module (C++)” on page 2-30

+ “Class (C++)” on page 2-32

+ “Functions to call within the specified classes (C++)” on page 2-34
+ “Analyze class contents only (C++)” on page 2-37

+ “Skip member initialization check (C++)” on page 2-39

2 Option Descriptions specific to C++ Code

* “Functions to call (C++)” on page 2-40

+ “Variables to initialize (C++)” on page 2-42

+ “Initialization functions (C++)” on page 2-44
+ “Parameters (C++)” on page 2-46

* “Inputs (C++)” on page 2-48

+ “Initialization functions (C++)” on page 2-50
+ “Step functions (C++)” on page 2-51

* “Termination functions (C++)” on page 2-53
* “No STL stubs (C++)” on page 2-54

* “Functions to stub (C++)” on page 2-55

* “Tuning Precision and Scaling Parameters” on page 2-57
+ “Verification level (C++)” on page 2-59

+ “Inline (C++)” on page 2-61

+ “Other (C++)” on page 2-62

2-2

Target processor type (C++)

Target processor type (C++)

Specify the target processor type. This option is available on the Configuration pane
under the Target & Compiler node.

Specifying the target processor type informs Polyspace of the size of fundamental data
types and of the endianess of the target machine. You can analyze code intended for an
unlisted processor type using one of the listed processor types, if they share common data
properties.

Settings
Default: 1386
You can modify some default attributes by selecting the browse button to the right of

the Target processor type drop-down menu. The optional settings for each target are
shown in [brackets] in the table.

Target char |short |int |long |long |float |double |long ptr |signof endian |align
long double char

1386 8 16 32 (32 |64 32 |64 96 32 |signed |Little |32
sparc 8 16 32 |32 |64 32 |64 128 32 |signed |Big 64
m68k / 8 16 32 |32 |64 32 |64 96 32 |signed |Big 64
ColdFire®

powerpc 8 16 32 |32 |64 32 |64 128 32 |unsigned|Big 64
c-167 8 16 16 (32 |32 32 |64 64 16 |signed |Little |64
X86_64 8 16 32 (64 |64 32 |64 128 64 |signed |Little |64 [32]

[32]"

mepu... |8 |8[16]|16 |32 [32 |32 [32[64] |321(64] |16 |signed |Little |32 [16,
(Advanced)[16] [32] [64] [32] 8]
a. The M68k family (68000, 68020, etc.) includes the “ColdFire” processor
b. Use option -long-is-32bits to support Microsoft C/C++ Win64 target

c. mcpu is a reconfigurable Micro Controller/Processor Unit target. You can use this type to configure one or more
generic targets.

2-3

2 Option Descriptions specific to C++ Code

2-4

Tips

If your processor is not listed, use a similar processor that shares the same
characteristics, or create an mpcu generic target processor. If your target processor
does not match the characteristics of a processor described above, contact MathWorks
technical support for advice.

Command-Line Information

Parameter: -target

Value: 1386 | m68k | powerpc | c-167 | x86_64 | mpcu

Default: 1386

Example: polyspace-code-prover-nodesktop -lang cpp -target powerpc

See Also

“Generic target options (C/C++)” on page 1-9

Related Examples
. “Specify Analysis Options”
. “Modify Predefined Target Processor Attributes”

. “Define Generic Target Processors”

Dialect (C++)

Dialect (C++)

Allow syntax associated with C++ language extensions. This option is available on the
Configuration pane under the Target & Compiler node.

Settings
Default: none

none
Analysis allows for ISO/IEC 14882:2003 C++ (C++ 2003) syntax.

If you want to allow ISO/IEC 14882:2011 C++ (C++ 2011) syntax, also select C++ 11
extensions.

gnu3.4

Analysis allows GCC 3.4 dialect syntax.
gnu4.6

Analysis allows GCC 4.6 dialect syntax.
gnu4.7

Analysis allows GCC 4.7 dialect syntax.

For more information, see “Limitations” on page 2-6.

1SO
Analysis allows for ISO/IEC 14882:2003 C++ (C++ 2003) syntax.

If you want to allow ISO/IEC 14882:2011 C++ (C++ 2011) syntax, also select C++ 11
extensions.

cfront2

Analysis allows for Cfront 2.0 language extensions.
cfront3

Analysis allows for Cfront 3.0 language extensions.
visual

Analysis allows Visual C++ .NET 2003 syntax.
visual6

Analysis allows Visual C++ 6.0 (VC6) syntax.
visual7.0

2-5

2 Option Descriptions specific to C++ Code

2-6

Analysis allows Visual C++ .NET 2002 syntax.
visual7.1

Analysis allows Visual C++ NET 2003 syntax.
visual8

Analysis allows Visual C++ 2005 syntax.
visual9.0

Analysis allows Visual C++ 2008 syntax.
visuall10

Analysis allows Visual C++ 2010 syntax.

This option automatically adds the option -no-stl-stubs.
visualll.O
Analysis allows Visual C++ 2012 syntax.

This option automatically adds the option -no-stl-stubs.

Dependencies

This parameter is dependent on the value of Target operating system. The dialect
options work only with the applicable operating systems. You can use every dialect with
the Target operating system option, no-predefined-0S.

If you enable Check JSF C++ Rules with a dialect other than 1so or none, Polyspace
cannot completely check some JSF coding rules. For example, AV Rule 8: “All code shall

conform to ISO/IEC 14882:2002(E) standard C++.”
Limitations

Polyspace does not support certain aspects of the GNU 4.7 dialect. These limitations can
cause compilation errors, incomplete results, or false positives.

* Priority attributes — Not supported, ignores priorities and uses standard
initialization instead.

Example

#include <stdio.h>

Example

struct A{
int a;
AQ:a(@) {
fprintf(stderr, "A constructor\n');
}

}:

struct B{
int b;

BO:b() {
fprintf(stderr, "B constructor\n');
}

__attribute__ ((init_priority (100)));

}
A a
B b __attribute__ ((init_priority (50)));

The expected output from the above code is:

B constructor
A constructor

However, Polyspace preserves the standard initialization. So the actual output is:

A constructor
B constructor

Workaround: To use the desired priority, change the order of the declarations to
match the desired order.

Vector types and attributes — Not supported.
Visibility attributes — Not supported, ignored. This limitation can cause C++
linkage problems in Polyspace Code Prover.

Workaround: Remove all attributes during preprocessing,

* At the command line, use the option -D __attribute_ (X)=.

* In the Polyspace environment, in Macros > Preprocessor definitions, add a
row: __attribute_ (X)=.

Complex types — Only floating complex types supported, integral complex types
cause an error.

Using built-in library function on complex types — Not supported, stubbed
during analysis. Calls to these functions will return variables with full ranges.

2 Option Descriptions specific to C++ Code

Workaround: To make the analysis more precise, add an include file that defines the
functions for complex variables.

Computed goto — Not supported, causes an error in Code Prover.

Workaround: To ignore the computed gotos in Code Prover, stub the functions
containing the computed gotos:

At the command line, use the option —functions-to-stub funcList where
funcList is the list of functions containing the computed gotos.

* In the Polyspace environment, in the Inputs & Stubbing > Functions to stub
table, use the a7 button to add a row for each function containing the computed
gotos.

Nested functions — Not supported, causes an error.

Using built-in library functions on atomic operators — Not supported,
Polyspace stubs the functions. This limitation can cause imprecise results.

IEEE floating point library functions — Limited support, can cause imprecise
results.

This limitation includes isnan, isnanf, isnanl, isinf, isinff, isinfl,
isnormal, and isfinite.

Workaround: In each of your source files, include a file containing the function
definitions or declarations:

+ At the command line, use the option -include filename.
In the Polyspace environment, in Environment Settings > Include, use the a7
button to add a row for your definition/declaration file.

Command-Line Information

Parameter: -dialect

Value: none | gnu3.4 | gnu4d.6 | gnud4.7 | iso | cfront2 | cfront3 |
visual | visual6 | visual7.0 | visual7.1 | visual8 | visual9.0 |
visuall0 | visualll.O

Default: none

Example: polyspace-code-prover-nodesktop -lang cpp -sources
"filel.cpp,file2.cpp" -0S-target Visual -dialect visual7.1

Example

See Also

“Target operating system (C/C++)” on page 1-4 | “Target processor type (C++)” on page
2-3 | “C++11 Extensions (C++)” on page 2-10 | “Block char16/32_t types (C++)” on
page 2-11

Related Examples
. “Verify Keil or IAR Dialects”

More About
. “Supported C++ 2011 Standards”

2-9

2 Option Descriptions specific to C++ Code

C++11 Extensions (C++)

2-10

Allow for C++11 language extensions. This option is available on the Configuration
pane under the Target & Compiler node.

If your code uses any C++11 language constructs, select this option to allow this syntax
during your analysis.

Settings

Default: Off

Off
The analysis does not allow C++11 syntax.

41 0On
The analysis allows C++11 syntax.

Dependencies

You can only select this option when the Dialect option is hone, gnu4 .6, or gnu4.7.

Command-Line Information

Parameter: —-cpp-11-extension

Default: off

Example: polyspace-code-prover-nodesktop -lang cpp -cppll-extension

See Also
“Dialect (C++)” on page 2-5 | “Block char16/32_t types (C++)” on page 2-11

More About
. “Supported C++ 2011 Standards”

Block char16/32_t types (C++)

Block char16/32_t types (C++)

The analysis does not allow charl6_t or char32_t types. This option is available on the
Configuration pane under the Target & Compiler node.

If you have defined charl16_t and/or char32_t through a typedef statement or using
includes, this option allows you to turn off the standard Polyspace definition of charl6_t
and char32_t.

Settings
Default: Off

Off
The analysis allows charl6_t and char32_t types.

¥ On
The analysis does not allow charl6_t and char32_t types.

Dependencies
You can only select this option when:

+ Dialect option is none, gnu4.6, or gnu4.7.

+ C++ 11 Extensions is selected.

Command-Line Information

Parameter: —-no-uliterals

Default: off

Example: polyspace-code-prover-nodesktop -dialect gnhu4.7 -lang cpp -
cpp-1ll-extension -no-uliterals

See Also

“Dialect (C++)” on page 2-5 | “C++11 Extensions (C++)” on page 2-10

More About
. “Supported C++ 2011 Standards”

2-11

2 Option Descriptions specific to C++ Code

Enum type definition (C++)

2-12

Allow the analysis to use different base types to represent an enumerated type,
depending on the enumerator values and the selected definition. This option is available
on the Configuration pane under the Target & Compiler node.

When using this option, each enum type is represented by the smallest integral type that
can hold all its enumeration values.

Settings
Default: auto-signed-int-first

auto-signed-int-first On
Uses the first type that can hold all of the enumerator values from the following

list:signed int, unsigned int, signed long, unsigned long, signed long
long, unsigned long long

auto-signed-first

Uses the first type that can hold all of the enumerator values from the following list:
signed char, unsigned char, signed short, unsigned short, signed int,
unsigned int, signed long, unsigned long, signed long long, unsigned
long long.

auto-unsigned-first

Uses the first type that can hold all of the enumerator values from the following lists:

+ If enumerator values are positive: unsigned char, unsigned short, unsigned
int, unsigned long, unsigned long long.

+ If one or more enumerator values are negative: signed char, signed short,
signed int, signed long, signed long long.

Command-Line Information

Parameter: —-enum-type-definition

Value: auto-signed-int-first | auto-signed-first | auto-unsigned-
first

Default: auto-signed-int-first

Example: polyspace-code-prover-nodesktop -lang cpp -enum-type-
definition auto-signed-first

Pack alignment value (C++)

Pack alignment value (C++)

Specify the default packing alignment for an analysis. This option is available on the
Configuration pane under the Target & Compiler node.

If an invalid value is given, analysis will halt and display an error message. with a bad
value or if this option is used in non visual mode (Target operating system Visual or
Dialect visual?®).

Settings
Default: 8

@ &~ DN =

- 16

Dependencies

This analysis option is available only when,

+ Target operating system is set to no-predefined-0S or Visual.

+ and Dialect is set to one of the visual * options.

Command-Line Information

Parameter: —-pack-al ignment-value

Value:1 | 2 | 4| 8] 16

Default: 8

Example: polyspace-code-prover-nodesktop -lang cpp -pack-alignment-
value 4

2-13

2 Option Descriptions specific to C++ Code

Ignore pragma pack directives (C++)

Specifies C++ #pragma packing alignment for structure, union, and class members. This
option is available on the Configuration pane under the Target & Compiler node.

Settings
Default: Off

Off
Keeps C++ #pragma directives in the analysis
41 On

Allows C++ #pragma directives to be ignored in order to prevent link errors

Analysis will halt and display an error message with a bad value or if this option is
used in non visual mode (Target operating system Visual or Dialect visual™).

Dependencies

This analysis option is available only when,

+ Target operating system is set to no-predefined-0S or Visual.
+ and Dialect is set to one of the visual * options.

Command-Line Information

Parameter: -ignore-pragma-pack

Default: Off

Example: polyspace-code-prover-nodesktop -lang cpp -ignore-pragma-
pack

2-14

Support managed extensions (C++)

Support managed extensions (C++)

Visual C++ /FX option allows the partial translation of sources making use of managed
extensions to Visual C++ sources without managed extensions. This option is available
on the Configuration pane under the Target & Compiler node.

Settings
Default: Off

Off
Do not support managed extensions
¥ On

Allows the analysis of a project containing translated sources obtained by compilation
of a Visual project using the /FX Visual option.

Using /FX, the translated files are generated in place of the original ones in the
project, but the names are changed from foo.ext to foo.mrg.ext.

These extensions are currently not taken into account by Polyspace analysis and can
be considered as a limitation to analyze this kind of code. Managed files need to be
located in the same folder as the original ones and Polyspace software will analyze
managed files instead of the original ones without intrusion, and will permit you to
remove part of the limitations due to specific extensions.

Dependencies

This analysis option is available only when,

+ Target operating system is set to no-predefined-0S or Visual.

+ and Dialect is set to one of the visual * options.

Command-Line Information

Parameter: -support-FX-option-results

Default: off

Example: polyspace-code-prover-nodesktop -lang cpp -0S-target Visual
-support-FX-option-results

2-15

2 Option Descriptions specific to C++ Code

Import folder (C++)

2-16

Specifies a single directory to be included by #import directive. This option is available
on the Configuration pane under the Target & Compiler node.

Settings

No default

Give the location of *.tlh files generated by a Visual Studio compiler when
encountering #import directive on *.tlb files.

Dependencies

This analysis option is available only when,

+ Target operating system is set to no-predefined-0S or Visual.

+ and Dialect is set to one of the visual * options.

Command-Line Information

Parameter: -import-dir

Value: File location

Example: polyspace-code-prover-nodesktop -0S-target Visual -dialect
visual8 -import-dir /coml/inc

Management of scope of 'for loop' variable index (C++)

Management of scope of 'for loop' variable index (C++)

Specify the scope of the index variable declared within a for loop. This option is
available on the Configuration pane under the Target & Compiler node.
For example:

for (int index=0; ...){};
index++; // At this point, index variable is usable (out) or not (in)

This option allows the default behavior implied by the Polyspace —dialect option to be
overridden.

This option is equivalent to the Visual C++ options /Zc:forScope and Zc: forScope-.

Settings
Default: defined-by-dialect

defined-by-dialect
Default behavior specified by selected dialect
out

The index variable is usable outside the scope of the for loop.

Default behavior for the dialect options cfront2, crfront3, visual6, visual7 and
visual 7.1

The index variable is not usable outside the scope of the for loop.

Default behavior for all other dialects, including visual 8. The C++ standard
specifies that the index is treated as in.

Command-Line Information

Parameter: -for-loop-index-scope

Value: defined-by-dialect | out | in

Default: defined-by-dialect

Example: polyspace-code-prover-nodesktop -lang cpp -for-loop-index-
scope in

2-17

2 Option Descriptions specific to C++ Code

Management of wchar_t (C++)

Specify how to treat wchar_t. This option is available on the Configuration pane under
the Target & Compiler node.

This option is equivalent to the Visual C++ options /Zc:wchar and /Zc:wchar-.

Settings
Default: defined-by-dialect

defined-by-dialect
Default behavior specified by selected dialect
typedef

Use according to typedef statement specified by Microsoft Visual C++
6.0/7.0/7 .1 dialects.

Default behavior for the dialect options visual6, visual7.0 and visual7.1
keyword
Use as a keyword as given by the C++ standard

Default behavior for all other dialects, including visual8.

Command-Line Information

Parameter: -wchar-t-1is

Value: defined-by-dialect | typedef | keyword

Default: defined-by-dialect

Example: polyspace-code-prover-nodesktop -for-loop-index-scope
keyword

2-18

Set wchar_t to unsigned long (C++)

Set wchar_t to unsigned long (C++)

Specify the underlying type of wchar_t to be unsigned long. This option is available on
the Configuration pane under the Target & Compiler node.

Settings
Default: Off

Off
Use the default underlying type of wchar_t as defined by the dialect or the
Management of wchar_t option.
4/ On
Set the type of size_t to unsigned long, as defined in the C++ standard.

For example, sizeof(L"W") will have the value of sizeof(unsigned long) and
the wchar_t field will be aligned in the same way as the unsigned long field.

Command-Line Information

Parameter: -wchar-t-is-unsigned-long

Default: off

Example: polyspace-code-prover-nodesktop -lang cpp -wchar-t-is-
unsigned-long

2-19

2 Option Descriptions specific to C++ Code

Set size_t to unsigned long (C++)

2-20

Force the underlying type of size_t to be unsigned long. This option is available on
the Configuration pane under the Target & Compiler node. If you use this option, you
can only redefine size_t with a typedef statement to unsigned long.

For example, Polyspace correctly applies this typedef statement because the type is
unsigned long:

typedef unsigned long size_t;
However, Polyspace ignores this typedef statement,

typedef unsigned int size_t;
because the Set size_t to unsigned long option allows only unsigned long.

Settings
Default: Off

Off
Use the default underlying type of size_t, unsigned int
¥ On

Set the type of size_t to unsigned long

Command-Line Information

Parameter: -size-t-is-unsigned-long

Default: off

Example: polyspace-code-prover-nodesktop -lang cpp -size-t-is-
unsigned-long

Ignore link errors (C++)

Ignore link errors (C++)

Ignore linkage errors. This option is available on the Configuration pane under the
Environment Settings node.

Some functions may be declared inside an extern “C” { } block in some files and not

in others. Then, their linkage is not the same and it causes a link error according to the
ANSI standard.

Applying this option will cause Polyspace to ignore this error. This permissive option may
not resolve all the extern C linkage errors.

Settings
Default: Off

Off
Stop analysis for linkage errors.
¥ On

Ignore the linkage errors if possible.

Command-Line Information

Parameter: -no-extern-C

Default: off

Example: polyspace-code-prover-nodesktop -lang cpp -no-extern-C

2-21

2 Option Descriptions specific to C++ Code

Check MISRA C++ rules

2-22

Specify whether to check for violation of MISRA C++ rules. Each value of the option
corresponds to a subset of rules to check. This option is available on the Configuration
pane under the Coding Rules node.

After analysis, the Results Summary pane lists the coding rule violations. On the
Source pane, for every coding rule violation, Polyspace assigns a ¥ symbol to the
keyword or identifier relevant to the violation.

Settings
Default: required-rules

required-rules

Check required coding rules.
all-rules

Check required and advisory coding rules.
SQO-subsetl

Check only a subset of MISRA C++ rules. In Polyspace Code Prover, observing
these rules can reduce the number of unproven results. For more information, see
“Software Quality Objective Subsets (C++)”.

SQO-subset2

Check a subset of rules including SQO-subsetl and some additional rules. In
Polyspace Code Prover, observing these rules can further reduce the number of
unproven results. For more information, see “Software Quality Objective Subsets (C+
+)”

custom

Specify coding rules to check. Click Edit to create a coding rules file.

After creating and saving the file, to reuse it for another project, do one of the
following:

+ Enter full path to the file in the space provided.

ctick B3| e [4o 10ad the file.

Check MISRA C++ rules

Format of the custom file:

<rule number> off]on
Use # to enter comments in the file. For example:

9-5-1 off # rule 9-5-1: classes
15-0-2 on # rule 15-0-2: exception handling

Command-Line Information
Parameter: -misra-cpp

Value: required-rules | all-rules | SQO-subsetl | SQO-subset2 | file
Default: required-rules

Example: polyspace-code-prover-nodesktop -sources file name -misra-
cpp all-rules

Related Examples

. “Specify Analysis Options”

. “Activate Coding Rules Checker”

. “Select Specific MISRA or JSF Coding Rules”

More About

. “Polyspace MISRA C++ Checker”

. “Software Quality Objective Subsets (C++)”
. “MISRA C++ Coding Rules”

2-23

2 Option Descriptions specific to C++ Code

Check JSF C++ rules

2-24

Specify whether to check for violation of JSF C++ rules (JSF++:2005). Each value of
the option corresponds to a subset of rules to check. This option is available on the
Configuration pane under the Coding Rules node.

After analysis, the Results Summary pane lists the coding rule violations. On the
Source pane, for every coding rule violation, Polyspace assigns a ¥ symbol to the
keyword or identifier relevant to the violation.

Settings
Default: shall-rules

shall-rules

Check all Shall rules. Shall rules are mandatory requirements and require
verification.

shall-will-rules

Check all Shall and Will rules. Will rules are intended to be mandatory
requirements but do not require verification.

all-rules
Check all Shall, Will, and Should rules. Should rules are advisory rules.
custom

Specify coding rules to check. Click ‘Ed—lt/ to create a coding rules file.

After creating and saving the file, to reuse it for another project, do one of the
following:

+ Enter full path to the file in the space provided.

ctick L5) cticc [o 10ad the file.

Format of the custom file:

<rule number> off]on
Use # to enter comments in the file. For example:

67 off # rule 67: classes

Check JSF C++ rules

202 on # rule 202: expressions

Tips

If your project uses a dialect other than ISO, some rules might not be completely
checked. For example, AV Rule 8: “All code shall conform to ISO/ITEC 14882:2002(E)
standard C++.”

Command-Line Information

Parameter: —-jsf-coding-rules

Value: shall-rules | shall-will-rules | all-rules | file

Default: shall-rules

Example: polyspace-code-prover-nodesktop -sources file name -jsf-
coding-rules all-rules

Related Examples
“Specify Analysis Options”
“Activate Coding Rules Checker”
“Select Specific MISRA or JSF Coding Rules”

More About

“Polyspace JSF C++ Checker”
“JSF C++ Coding Rules”

2-25

2 Option Descriptions specific to C++ Code

Files and folders to ignore (C++)

2-26

Specify files and folders to ignore during coding rules checking. This option is available
on the Configuration pane under the Inputs & Stubbing node. The files and folders
are not ignored during Code Prover verification.

Settings
Default: al I-headers

all-headers
Ignores .h or _hpp files
all
Ignores all files in include folders
custom
Ignore include files and folders that you specify in the File/Folder view. To add files

to the custom File/Folder list, select 1/ to choose the files and folders to exclude.
To remove a file or folder from the list of excluded files and folders, select the row.

Then click &S .

Dependencies

This option is enabled only if you select one of the options Check MISRA C++ rules,
Check JSF C++ rules or Check custom rules.

Command-Line Information

Parameter: —-includes-to-ignore

Value: all-headers | all | file1[,file2[,.-.]1]1 | folderi[,folder2[,...1]
Default: al I-headers

Example: polyspace-code-prover-nodesktop -lang cpp -sources file name
—-jsf-coding-rules required-rules -includes-to-ignore "C:\usr
\include"”

See Also
“Check MISRA C++ rules” | “Check JSF C++ rules” | “Check custom rules (C/C++)”

Files and folders to ignore (C++)

Related Examples
. “Specify Analysis Options”
. “Activate Coding Rules Checker”

2-27

2 Option Descriptions specific to C++ Code

Main entry point (C++)

Specify the function that you want to use as main. If the function does not exist, the
verification stops with an error message. Use this option to specify Microsoft Visual C++
extensions of main.

Settings
Default: tmain

_tmain

Use _tmain as entry point to your code.
wmain

Use wmain as entry point to your code.
_tWinMain

Use tWinMain as entry point to your code.
wWinMain

Use wWinMain as entry point to your code.
WinMain

Use WinMain as entry point to your code.
DIIMain

Use DI IMain as entry point to your code.

Dependencies
This option is enabled only when you select:

+ Visual for Target & Compiler > Target operating system

+ Code Prover Verification > Verify whole application

Command-Line Information

Parameter: -main

Value: _tmain | wnain | _tWinMain | wwinMain | WinMain | DI IMain
Example: polyspace-code-prover-nodesktop -sources file name -0S-
target visual -main _tmain

2-28

Main entry point (C++)

See Also

“Verify module (C++)”

Related Examples
. “Specify Analysis Options”

2-29

2 Option Descriptions specific to C++ Code

Verify module (C++)

Specify that Polyspace must generate a main function during verification if it does not
find one in the source files.

Settings

Default: On

2 On
Polyspace generates a main function if it does not find one in the source files. The
generated main:

Initializes variables specified by Variables to initialize.

Calls functions specified by Initialization functions ahead of other functions.

Calls functions specified by Functions to call in arbitrary order.

AW N —

Calls class methods specified by Class and Functions to call within the
specified classes.

If you do not specify the above options explicitly, the generated main:

+ Initializes all global variables except those declared with keywords const and
static.

+ Calls in arbitrary order all functions and class methods that are not called
anywhere in the source files. Polyspace considers that global variables can be
written between two consecutive function or methods calls. Therefore, in each
called function or method, global variables initially have the full range of values
allowed by their type.

Off

Polyspace stops verification if it does not find a main function in the source files.

Command-Line Information
Parameter: -main-generator
Default: Off

2-30

Verify module (C++)

See Also

“Variables to initialize (C++)” | “Functions to call (C++)” | “Initialization functions (C+
+)” | “Class (C++)” | “Functions to call within the specified classes (C++)”

Related Examples
. “Specify Analysis Options”

. “Automatically Generate a Main”
More About
. “Main Generator Overview”

2-31

2 Option Descriptions specific to C++ Code

Class (C++)

2-32

Specify classes that Polyspace uses to generate a main.

Settings
Default: all
all

Polyspace can use all classes to generate a main. The generated main calls methods
that you specify using Functions to call within the specified classes.

none
The generated main cannot call any class method.
custom

Polyspace can use classes that you specify to generate a main. The generated main
calls methods from classes that you specify using Functions to call within the
specified classes.

Dependencies

This option is enabled only if you select Code Prover Verification > Verify module.

Tips

If you select none for this option, Polyspace will not verify class methods that you do not
call explicitly in your code.

Command-Line Information

Parameter: -class-analyzer

Value: all | none | custom=classi[,class2,...]

Default: all

Example: polyspace-code-prover-nodesktop -sources file name -main-
generator -class-analyzer custom=myClassl,myClass2

See Also
“Verify module (C++)” | “Functions to call within the specified classes (C++)” | “Analyze
class contents only (C++)” | “Skip member initialization check (C++)”

Class (C++)

Related Examples

“Specify Analysis Options”
“Simple Class”

“Simple Inheritance”
“Multiple Inheritance”
“Abstract Classes”
“Virtual Inheritance”
“Other Types of Classes”

More About

“Why Provide a Class Analyzer”

“How the Class Analyzer Works”

“Sources Verified”

“Architecture of Generated Main”

“Class Verification Log File”

“Characteristics of Class and Log File Messages’
“Behavior of Global Variables and Members”
“Methods and Class Specifics”

Y

2-33

2 Option Descriptions specific to C++ Code

Functions to call within the specified classes (C++)

2-34

Specify class methods that Polyspace uses to generate a main. The generated main can
call static, public and protected methods in classes that you specify using the Class
option.

Settings
Default: unused

all

The generated main calls all public and protected methods. It does not call methods
inherited from a parent class.

all-public

The generated main calls all public methods. It does not call methods inherited from
a parent class.

inherited-all

The generated main calls all public and protected methods including those inherited
from a parent class.

inherited-all-public

The generated main calls all public methods including those inherited from a parent
class.

unused

The generated main calls public and protected methods that are not called in the
code.

unused-public

The generated main calls public methods that are not called in the code. It does not
call methods inherited from a parent class.

inherited-unused

The generated main calls public and protected methods that are not called in the
code including those inherited from a parent class.

inherited-unused-public

The generated main calls public methods that are not called in the code including
those inherited from a parent class.

Functions to call within the specified classes (C++)

custom
The generated main calls the methods that you specify.

Dependencies

This option is enabled only if you select Code Prover Verification > Verify module.

Command-Line Information

Parameter: -class-analyzer-calls

Value: all | all-public | inherited-all | inherited-all-public

unused | unused-public | inherited-unused | inherited-unused-public |
custom=method1[,method2,...]

Default: unused

Example: polyspace-code-prover-nodesktop -sources file name -main-
generator -class-analyzer custom=myClassl,myClass2 -class-analyzer-
calls unused-public

See Also

“Verify module (C++)” | “Class (C++)” | “Analyze class contents only (C++)” | “Skip
member initialization check (C++)”

Related Examples

. “Specify Analysis Options”
. “Simple Class”

. “Simple Inheritance”

. “Multiple Inheritance”

. “Abstract Classes”

. “Virtual Inheritance”

. “Other Types of Classes”

More About

. “Why Provide a Class Analyzer”
. “How the Class Analyzer Works”

. “Sources Verified”

2-35

2 Option Descriptions specific to C++ Code

. “Architecture of Generated Main”

. “Class Verification Log File”

. “Characteristics of Class and Log File Messages”
. “Behavior of Global Variables and Members”

. “Methods and Class Specifics”

2-36

Analyze class contents only (C++)

Analyze class contents only (C++)

Specify that Polyspace must verify only methods of classes that you specify using the
Class option.

Settings
Default: Off

¥ On

Polyspace verifies the class methods only. It stubs functions out of class scope even if
the functions are defined in your code.

Off

Polyspace verifies functions out of class scope in addition to class methods.

Dependencies

This option is enabled only if you select Code Prover Verification > Verify module. If
you select this option, you must specify the classes using the Class option.

Tips
Use this option:

* For robustness verification of class methods. Unless you use this option, Polyspace
verifies methods that you call in your code only for your input combinations.

* In case of scaling.

Command-Line Information
Parameter: -class-only
Default: Off

See Also

“Verify module (C++)” | “Class (C++)” | “Functions to call within the specified classes (C
++)” | “Skip member initialization check (C++)”

2-37

2 Option Descriptions specific to C++ Code

2-38

Related Examples

“Specify Analysis Options”
“Simple Class”

“Simple Inheritance”
“Multiple Inheritance”
“Abstract Classes”
“Virtual Inheritance”
“Other Types of Classes”

More About

“Why Provide a Class Analyzer”

“How the Class Analyzer Works”

“Sources Verified”

“Architecture of Generated Main”

“Class Verification Log File”

“Characteristics of Class and Log File Messages”
“Behavior of Global Variables and Members”
“Methods and Class Specifics”

Skip member initialization check (C++)

Skip member initialization check (C++)

Specify that Polyspace must not check whether each class constructor initializes all class
members.

Settings
Default: Off

¥/ On

Polyspace does not check whether each class constructor initializes all class
members.

Off

Polyspace checks whether each class constructor initializes all class members. It uses
the functions check_NIV() and check_NIP() in the generated main to perform
these checks. It checks for initialization of:

+ Integer types such as Int, char and enum, both signed or unsigned.
* Floating-point types such as float and double.

+ Pointers.

Dependencies

This option is enabled only if you select Code Prover Verification > Verify module. If
you select this option, you must specify the classes using the Class option.

Command-Line Information
Parameter: —-no-constructors-init-check
Default: Off

See Also
“Verify module (C++)” | “Class (C++)”

Related Examples
. “Specify Analysis Options”

2-39

2 Option Descriptions specific to C++ Code

Functions to call (C++)

2-40

Specify functions that you want the generated main to call. You can use this option only
to specify functions that are not members of a class.

Settings
Default: unused

none
The generated main does not call any function.

unused

The generated main calls only those functions that are not being called in the source
code. It does not call inlined functions.

all

The generated main calls all functions except inlined ones.

custom

The generated main calls functions that you specify. Click o to enter function name.

Dependencies

This option is enabled only if you select Verify module.

Tips
* Select unused when you use the option Run unit by unit verification.

+ If you want the generated main to call an inlined function, select custom and specify
the function name.

+ Select none:
If you do not want to verify uncalled functions. For applications that are not

multitasking, Polyspace cannot verify a function unless it can be reached from
main.

+ To verify a multitasking application without a main.

Functions to call (C++)

Command-Line Information
Parameter: -main-generator-calls

Value: none | unused | all | custom=functioni[,function2[,..-1]
Default: unused

Example: polyspace-code-prover-nodesktop -sources file name -main-
generator -main-generator-calls unused

Related Examples
. “Specify Analysis Options”

. “Automatically Generate a Main”
More About
. “Main Generator Overview”

2-41

2 Option Descriptions specific to C++ Code

Variables to initialize (C++)

2-42

Specify global variables that you want the generated main to initialize.

If you use the generated main to initialize a global variable, inside a function, before the
first write operation on the variable, Polyspace considers it to have any value allowed by
its type.

Settings

Default: uninit

uninit
The generated main only initializes global variables that you have not initialized
during declaration.

none
The generated main does not initialize global variables.

public

The generated main initializes all global variables except those declared with the
keywords static and const.

all

The generated main initializes all global variables except those declared with the
keyword const.

custom

The generated main only initializes global variables that you specify. Click o to
enter variable name.

Dependencies

This option is enabled only if you select Verify module.

Command-Line Information

Parameter: -main-generator-writes-variables

Value: none | public | all | custom=variablel[,variable2[,..-1]
Default: uninit

Variables to initialize (C++)

Example: polyspace-code-prover-nodesktop -sources file name -main-
generator -main-generator-writes-variables all

Related Examples
. “Specify Analysis Options”

. “Automatically Generate a Main”
More About
. “Main Generator Overview”

2-43

2 Option Descriptions specific to C++ Code

Initialization functions (C++)

Specify functions that you want the generated main to call ahead of other functions.

Settings

Default: None

Click & to add a field.

If the function or method is not overloaded, specify the function name. Otherwise, specify
the function prototype with arguments. For instance, in the following code, you must
specify the prototypes func(int) and func(double).

int func(int x) {
return(x * 2);

¥
double func(double x) {
return(x * 2);

}

If the function is:

* A class method: The generated main calls the class constructor before calling this
function.

* Not a class method: The generated main calls this function before calling class
methods.

Command-Line Information

Parameter: -functions-cal led-before-main

Value: functioni[,function2[,...1]

Default: None

Example: polyspace-code-prover-nodesktop -sources file name -main-
generator -functions-called-before-main myClass::init

Dependencies

This option is enabled only if you select Verify module.

2-44

Initialization functions (C++)

Related Examples
. “Specify Analysis Options”

. “Automatically Generate a Main”
More About
. “Main Generator Overview”

2-45

2 Option Descriptions specific to C++ Code

Parameters (C++)

This option is available only for model-generated code. Specify variables that the
generated main must initialize before the cyclic code loop begins. Before the loop begins,
Polyspace considers these variables to have any value allowed by their type.

Settings
Default: public

none
The generated main does not initialize variables.
all

The generated main initializes all variables except those declared with keyword
const.

custom

The generated main only initializes variables that you specify. Click oo
to add a field. Enter variable name. For class members, use the syntax
className: :variableName.

Command-Line Information

Parameter: -variables-written-before-loop

Value: none | public | all | custom=variablei[,variable2[,...1]
Default: public

Example: polyspace-code-prover-nodesktop -sources file name -main-
generator -variables-written-before-loop all

See Also

“Inputs (C++)” on page 2-48 | “Initialization functions (C++)” on page 2-50 |
“Step functions (C++)” on page 2-51 | “Termination functions (C++)” on page 2-53

Related Examples
. “Specify Analysis Options”
. “Configure Polyspace Analysis Options”

2-46

Parameters (C++)

More About
. “Recommended Polyspace options for Verifying Generated Code”
. “Main Generation for Model Verification”

2-47

2 Option Descriptions specific to C++ Code

Inputs (C++)

This option is available only for model-generated code. Specify variables that the
generated main must write to, at the beginning of every iteration of the cyclic code loop.
At the beginning of every loop iteration, Polyspace considers these variables to have any
value allowed by their type.

Settings
Default: public

none
The generated main does not initialize variables.

all

The generated main initializes all variables except those declared with keyword
const.

custom

The generated main only initializes variables that you specify. Click ol
to add a field. Enter variable name. For class members, use the syntax
className: :variableName.

Command-Line Information

Parameter: -variables-written-in-loop

Value: none | public | all | custom=variablei[,variable2[,...]]
Default: public

Example: polyspace-code-prover-nodesktop -sources file name -main-
generator -variables-written-in-loop all

See Also

“Parameters (C++)” on page 2-46 | “Initialization functions (C++)” on page 2-50 |
“Step functions (C++)” on page 2-51 | “Termination functions (C++)” on page 2-53

Related Examples
. “Specify Analysis Options”
. “Configure Polyspace Analysis Options”

2-48

Inputs (C++)

More About
. “Recommended Polyspace options for Verifying Generated Code”
. “Main Generation for Model Verification”

2-49

2 Option Descriptions specific to C++ Code

Initialization functions (C++)

2-50

This option is available only for model-generated code. Specify functions that the
generated main must call before the cyclic code begins.

Settings

Default: None

Click o to add a field. Enter function name. For class methods, use the syntax
className: : functionName.

Command-Line Information

Parameter: -functions-called-before-1oop

Value: functioni[,function2[,...1]

Default: None

Example: polyspace-code-prover-nodesktop -sources file name -main-
generator -functions-called-before-loop myfuncl,myfunc2

See Also
“Parameters (C++)” on page 2-46 | “Inputs (C++)” on page 2-48 | “Step functions (C++)”
on page 2-51 | “Termination functions (C++)” on page 2-53

Related Examples
. “Specify Analysis Options”
. “Configure Polyspace Analysis Options”

More About
. “Recommended Polyspace options for Verifying Generated Code”
. “Main Generation for Model Verification”

Step functions (C++)

Step functions (C++)

This option is available only for model-generated code. Specify functions that the
generated main must call in each cycle of the cyclic code.

Settings
Default: none

none

The generated main does not call functions in the cyclic code.
all

The generated main calls all functions except inlined ones.

custom

The generated main calls functions that you specify. Click o/ to add a field. Enter
function name. For class methods, use the syntax className: : functionName.

Tips

+ If you specify a function for the option Initialization functions or Termination
functions, you cannot specify it for Step functions.

Command-Line Information

Parameter: -functions-called-in-loop

Value: none | unused | all | custom=functioni[,function2[,..-1]
Default: none

Example: polyspace-code-prover-nodesktop -sources file name -main-
generator -functions-called-in-loop all

See Also

“Parameters (C++)” on page 2-46 | “Inputs (C++)” on page 2-48 | “Initialization functions
(C++)” on page 2-50 | “Termination functions (C++)” on page 2-53

Related Examples
. “Specify Analysis Options”

2-51

2 Option Descriptions specific to C++ Code

. “Configure Polyspace Analysis Options”

More About
. “Recommended Polyspace options for Verifying Generated Code”
. “Main Generation for Model Verification”

2-52

Termination functions (C++)

Termination functions (C++)

This option is available only for model-generated code. Specify functions that the
generated main must call after the cyclic code loop.

Settings

Default: None

Click oF to add a field. Enter function name. For class methods, use the syntax
className: :functionName.

Tips

+ If you specify a function for the option Initialization functions, you cannot specify it
for Termination functions.

Command-Line Information

Parameter: -functions-called-after-loop

Value: functioni[,function2[,...1]

Default: None

Example: polyspace-code-prover-nodesktop -sources file name -main-
generator -functions-called-after-loop myfuncl,myfunc2

See Also

“Parameters (C++)” on page 2-46 | “Inputs (C++)” on page 2-48 | “Initialization functions
(C++)” on page 2-50 | “Step functions (C++)” on page 2-51

Related Examples
. “Specify Analysis Options”
. “Configure Polyspace Analysis Options”

More About
. “Recommended Polyspace options for Verifying Generated Code”
. “Main Generation for Model Verification”

2-53

2 Option Descriptions specific to C++ Code

No STL stubs (C++)

Specify that the verification must not use Polyspace implementations of the Standard
Template Library.

Settings
Default: Off

¥/ On

The verification does not use Polyspace implementations of the Standard Template
Library.

Off

The verification uses efficient Polyspace implementations of the Standard Template
Library.

Tips

Use this option when Polyspace implementation of the Standard Template Library
causes linking errors.

Command-Line Information
Parameter: -no-stl-stubs
Default: Off

Related Examples
. “Specify Analysis Options”

2-54

Functions to stub (C++)

Functions to stub (C++)

Specify functions to stub during verification. This option is available on the
Configuration pane under the Inputs & Stubbing node.

For these functions, Polyspace :

+ Ignores the function definition even if it exists.

+ Assumes that the function inputs and outputs have full range of values allowed by
their type.

Settings

Click o to enter function name.
When entering function names, use one of the following syntaxes:

* Basic syntax, with extensions for classes and templates:

Function Type Syntax
Simple function test

Class method A::test
Template method A<T>::test

+ Syntax with function arguments, to differentiate overloaded functions. Function
arguments are separated with semicolons:

Function Type Syntax

Simple function test()

Class method A::test(int;int)

Template method A<T>::test<T>::test(T;T)

Command-Line Information
Parameter: -functions-to-stub
Value: functioni[,function2[,...1]
Default: None

2-55

2 Option Descriptions specific to C++ Code

Example: polyspace-code-prover-nodesktop -sources file name -
functions-to-stub function_1,function_2

See Also

“No automatic stubbing (C/C++)” | “Variable/function range setup (C/C++)” | “Functions
to stub (C)”

Related Examples

. “Specify Analysis Options”

. “Specify Functions to Stub Automatically”
. “Constrain Data with Stubbing”

More About

. “Stubbing Overview”
. “When to Provide Function Stubs”
. “Stubbing Examples”

2-56

Tuning Precision and Scaling Parameters

Tuning Precision and Scaling Parameters

Precision versus Time of Verification

There is a compromise to be made to balance the time required to obtain results, and

the precision of those results. Consequently, launching Polyspace verification with

the following options will allow the time taken for verification to be reduced but will
compromise the precision of the results. It is suggested that the parameters should be
used in the sequence shown - that is, if the first suggestion does not increase the speed of
verification sufficiently then introduce the second, and so on.

+ switch from -O2 to a lower precision;

+ set the “Respect types in global variables (C/C++)” and “Respect types in fields (C/C+
+)” options;

+ set the option “Depth of verification inside structures (C/C++)” to 2, then 1, or 0;

+ stub manually missing functions which write into their arguments.

Precision versus Code Size

Polyspace verification can make approximations when computing the possible values of
the variables, at any point in the program. Such an approximation will use a superset of
the actual possible values.

For instance, in a relatively small application, Polyspace verification might retain very
detailed information about the data at a particular point in the code, so that for example
the variable VAR can take the values { -2; 1; 2; 10; 15; 16; 17; 25 }. If VAR is used to
divide, the division is green (because 0 is not a possible value). If the program being
analyzed is large, Polyspace verification would simplify the internal data representation
by using a less precise approximation, such as [-2; 2] U {10} U [15; 17] U {25} . Here, the
same division appears as an orange check.

If the complexity of the internal data becomes even greater later in the verification,
Polyspace verification might further simplify the VAR range to (say) [-2; 20].

This phenomenon leads to the increase or the number of orange warnings when the size
of the program becomes large.

2-57

2 Option Descriptions specific to C++ Code

Note: The amount of simplification applied to the data representations also depends

on the required precision level (00, O2), Polyspace verification will adjust the level of
simplification:

-00: shorter computation time. You only need to focus on red and gray checks.

-02: less orange warnings.

-03: less orange warnings and bigger computation time.

2-58

Verification level (C++)

Verification level (C++)

Specify the number of times the Polyspace verification process runs on your source code.
Each run can lead to greater number of proven results but also requires more verification
time.

Settings
Default: Software Safety Analysis level 2

C++ source compliance checking
Polyspace completes coding rules checking at the end of the compilation phase.
Software Safety Analysis level 0
The verification process runs once on your source code.
Software Safety Analysis level 1
The verification process runs twice on your source code.
Software Safety Analysis level 2

The verification process runs thrice on your source code. Use this option for most
accurate results in reasonable time.

Software Safety Analysis level 3

The verification process runs four times on your source code.
Software Safety Analysis level 4

The verification process runs five times on your source code.
other

If you use this option, Polyspace verification will make 20 passes unless you stop it
manually.

Tips

* Use the option Software Safety Analysis level 2. If the verification takes too
long, use a lower Verification level. Fix red errors and gray code before rerunning
the verification with higher verification levels.

+ Use the option Other sparingly since it can increase verification time by an
unreasonable amount. Using Software Safety Analysis level 2 provides
optimal verification of your code in most cases.

2-59

2 Option Descriptions specific to C++ Code

Dependency

You cannot use the C++ Source Compliance Checking setting with batch or
interactive mode.

Command-Line Information
Parameter: -to

Value: cpp-compliance | passO | passl | pass2 | pass3 | pass4 | other
Default: pass2

Example: polyspace-code-prover-nodesktop -sources file name -to pass2

Related Examples
. “Specify Analysis Options”

. “Improve Verification Precision”

2-60

Inline (C++)

Inline (C++)

Specify functions that the verification must clone for every function call. For instance, if
you specify the function func for inlining and func is called twice, the software creates
two copies of Func during verification. The copies are named using the convention
funcver_pst_cloned_tot where ver is the version number and tot is the total
number of copies.

Settings

Default: No function is inlined.

Click I:II.II:I to enter function name.

Tips

* Using this option can sometimes duplicate a lot of code and lead to scaling problems.
Therefore choose functions to inline carefully.

+ Choose functions to inline based on hints provided by the alias verification.

* Do not use this option for entry point functions, including main.

* This option applies to all overloaded methods of a class.

Command-Line Information

Parameter: -inline

Value: functioni[,function2[,...1]

Default: None

Example: polyspace-code-prover-nodesktop -sources file name -inline
my_func

Related Examples

. “Specify Analysis Options”

. “Reduce Procedure Complexity”

2-61

2 Option Descriptions specific to C++ Code

Other (C++)

In this section...

“.extra-flags” on page 2-62
“.cpp-extra-flags” on page 2-62
“il-extra-flags” on page 2-62

Specify special options for C++ verification, which are provided by MathWorks if
required.

-extra-flags

Default:

No extra flags.

Example Shell Script Entry:

polyspace-code-prover-nodesktop -extra-flags -paraml -extra-flags -
param2

-cpp-extra-flags

Default:

No extra flags.

Example Shell Script Entry:

polyspace-code-prover-nodesktop -cpp-extra-flags -stubbed-new-may-
return-null

-il-extra-flags
Default:
No extra flags.

Example Shell Script Entry:

2-62

Other (C++)

polyspace-code-prover-nodesktop -il-extra-flags flag

2-63

2-64

Polyspace Analysis Options —
Command Line Only

3 Polyspace Analysis Options — Command Line Only

3-2

-asm-begin -asm-end

Exclude compiler-specific asm functions from analysis

Syntax

-asm-begin “marki[,mark2,...]" -asm-end "“marki[,mark2,...]

Description

-asm-begin "marki[,mark2,...]" -asm-end "marki[,mark2,...]" excludes
compiler-specific assembly language source code functions from the analysis. You must
use these two options together.

Mark the offending code block by two #pragma directives, one at the beginning of the
asm code and one at the end. In the command usage, give these marks in the same order
for —asm-begin as they are for ~asm-end.

Examples

A block of code is delimited by #pragma startl and #pragma endl. These names must
be in the same order for their respective options. Either:

-asm-begin "startl" -asm-end "endl™
or

-asm-begin "marki,...markN,startl" -asm-end "marki,...markN,endl"
The following example marks two functions for exclusion, foo_1 and foo_2.
Code:

#pragma asm_begin_foo

int foo(void) { /* asm code to be ignored by Polyspace */ }

#pragma asm_end_foo

#pragma asm_begin_bar
void bar(void) { /* asm code to be ignored by Polyspace */ }

-asm-begin -asm-end

#pragma asm_end_bar
Polyspace Command:

polyspace-code-prover-nodesktop -lang ¢ -asm-begin "asm_begin_foo,asm_begin_bar™
-asm-end "asm_end_foo,asm_end_bar"

asm_begin_foo and asm_begin_bar mark the beginning of the assembly source code

sections to be ignored. asm_end_foo and asm_end_bar mark the end of those respective
sections.

See Also

polyspaceCodeProver

Related Examples

. “Run Verification from Command Line”

3-3

3 Polyspace Analysis Options — Command Line Only

3-4

-author

Specify project author

Syntax

-author "value"

Description

—author "value" assigns an author to the Polyspace project. The name appears as the
project owner in Polyspace Metrics and on generated reports.

The default value is the user name of the current user, given by the DOS or UNIX
command whoami.

Note: In the Polyspace environment, select 3 to specify the Project name, Version, and
Author parameters in the Polyspace Project — Properties dialog box.

Examples

Assign a project author to your Polyspace Project.

polyspace-code-prover-nodesktop -author "John Smith"

See Also

-date | -prog | polyspaceCodeProver

Related Examples

. “Run Verification from Command Line”

-date

-date

Specify date of analysis

Syntax

-date "date"

Description
-date "‘date" specifies the date stamp for the analysis in the format dd/mm/yyyy. By

default the value is the date the analysis starts.

Examples

Assign a date to your Polyspace Project.

polyspace-code-prover-nodesktop -date '"15/03/2012"

See Also

-author | -prog

Related Examples

“Run Verification from Command Line”

3-5

3 Polyspace Analysis Options — Command Line Only

-from

Specify which verification phase to start from

Syntax

-from verification-phase

Description

-from verification-phase specifies which verification phase to start from. You can
use this option only on an existing verification to elaborate on the results that you have
already obtained.

For example, if a verification has been completed -to passl, Polyspace verification
can be restarted -from passl and hence save on verification time. You usually use the
option after one run with the —to option, although you can also use it to recover after

a power failure. Possible values are as described in the -to verification-phase
section, with the addition of the scratch option.

Limitations

* You can use this option only for client verifications. All server verifications start from
scratch.

+ Unless you use the scratch option, use this option only if the previous verification
was started using -keep-all-files.

* You cannot use this option if you modify the source code between verifications.

Examples

Run a verification to the second pass, and then restart the verification from the same
pass.

polyspace-code-prover-nodesktop -to pass2

-from

polyspace-code-prover-nodesktop -from pass2

See Also

“Verification level (C)” on page 1-101 | polyspaceCodeProver

Related Examples

. “Run Verification from Command Line”

3-7

3 Polyspace Analysis Options — Command Line Only

-h[elp]

Display list of possible options

Syntax

-h
-help

Description
-h and -help display the list of possible options in the shell window and the argument

syntax.

Examples

Display the command-line help.

polyspace-code-prover-nodesktop -h
polyspace-code-prover-nodesktop -help

See Also

polyspaceCodeProver

Related Examples

. “Run Verification from Command Line”

3-8

Specify include folder for compilation

Syntax

-1 folder

Description

-1 folder specifies the name of a folder that you must include when compiling C
sources. You can specify only one folder for each instance of —1. However, you can specify
this option multiple times.

Polyspace software automatically includes the ./sources folder (if it exists) after the
include folders that you specify.

Examples

Include two folders with the analysis.

polyspace-code-prover-nodesktop -1 /coml/inc -1 /coml/sys/inc
Because ./sources is included automatically, this Polyspace command is equivalent to:

polyspace-code-prover-nodesktop -1 /coml/inc -1 /coml/sys/inc
-1 ./sources

See Also

polyspaceCodeProver

Related Examples

. “Run Verification from Command Line”

3-9

3 Polyspace Analysis Options — Command Line Only

3-10

-import-comments

Import comments and justifications from previous analysis

Syntax

—-import-comments resultsFolder

Description

—import-comments resultsFolder imports the comments and justifications from a
previous analysis, as specified by the results folder.

Examples

Increment your project’s version number (-version) and import comments from the
previous results.

polyspace-code-prover-nodesktop -version 1.3
—import-comments C:\Results\myProj\1.2

See Also

-version | polyspaceCodeProver

Related Examples

. “Run Verification from Command Line”

-interactive

-interacthive

Enable interactive remote analysis

Syntax

—-interactive

Description

—interactive enables the interactive remote analysis mode. In this remote analysis
mode, the analysis is tethered to your local computer. Therefore, on your local computer:

+ If you are running the analysis from the Polyspace user interface, using the
Advanced Settings > Other text box, you cannot close the user interface while the
analysis is running.

* If you are running the analysis from the command line, you cannot close the
command-line window while the analysis is running.

In this mode, the analysis is not queued on the cluster. Therefore, if a worker is not
available on the cluster, the analysis aborts. The software downloads the results to your
local computer after the analysis.

For interactive remote analysis, you need:

+ MATLAB Distributed Computing Server on the cluster
+ MATLAB, Polyspace and Parallel Computing Toolbox on your local computer

Dependency

You cannot use —-interactive with the Verification Level (-to) option set to C
source compliance checkingor C++ source compliance checking

Examples

If you do not have remote verification setup already, to run an interactive remote
verification from the command line, use with the -~scheduler option.

3-11

3 Polyspace Analysis Options — Command Line Only

polyspace-code-prover-nodesktop -interactive -scheduler NodeHost
polyspace-code-prover-nodesktop -interactive -scheduler
MJISName@NodeHost

See Also

“Batch (C/C++)” | -scheduler | polyspaceCodeProver

Related Examples
. “Run Verification from Command Line”

. “Set Up Remote Verification and Analysis”

3-12

-keep-all-files

-keep-all-files

Retain intermediate results and associated working files

Syntax

-keep-all-Files

Description

-keep-al l-Files retains all intermediate results and associated working files. If
the source code remains unchanged, you can restart a verification from the end of a
completed pass. If you do not specify this option, intermediate results are erased at the
end of a verification.

Tips

* When you select this option, you can restart a Polyspace verification from the end of
a complete pass (if the source code is unchanged). If you do not use this option, you
must restart the verification from the beginning.

+ This option is applicable only to client verifications. Before you download results from
the server, intermediate results are removed.

+ This option uses up a lot of disk space to store the intermediate files. Therefore, use
this option sparingly for debugging.

Examples

Run verification to passl and keep intermediate files.

polyspace-code-prover-nodesktop -keep-all-files -to passl

See Also

polyspaceCodeProver

3-13

3 Polyspace Analysis Options — Command Line Only

Related Examples

. “Run Verification from Command Line”

3-14

-known-NTC

-known-NTC

Ignore known non-terminating calls

Syntax

-known-NTC "funcft, func2..."

Description

-known-NTC "func1,func2..." renames known non-terminating calls as Known
Non-Terminating Calls in the results. The listed functions, func?1 and func2 appear as
Known Non-Terminating Calls instead of Non-Terminating Calls, enabling easy filtering.

By default, non-terminating calls are listed as Non-Terminating Call in the verification
results. After a few verifications, it is possible that a few functions "do not terminate".
Some functions, such as tasks and threads, contain infinite loops by design, while
functions that exit the program, such as kill_task, exitor Terminate_Thread,

are often stubbed by means of an infinite loop. If you use these functions often or if the
results are for presentation to a third party, you can filter non-terminating calls (K_NTC)
of that kind in the Viewer.

Examples

Run a verification and ignore known infinite calls to ki Il _task and exit.

polyspace-code-prover-nodesktop -lang ¢ -known-NTC "kill_task,exit"

See Also

“Known non-terminating call” | polyspaceCodeProver

Related Examples

. “Run Verification from Command Line”

3-15

3 Polyspace Analysis Options — Command Line Only

3-16

-lang

Specify code language for the project

Syntax

-lang [c|cpp]

Description

-lang [c|cpp] specifies the code language for the project, either ¢ for C code or cpp for
C++ code.

If you do not specify a language, Polyspace tries to detect the language from the source
files.

Note: In the Polyspace environment, specify the project language when you create a new
project. For more information, see “Create New Project”.

Examples

Define the language of your Polyspace Project as C++.

polyspace-code-prover-nodesktop -lang cpp -sources...

See Also

polyspaceCodeProver

Related Examples

. “Run Verification from Command Line”

-less-range-information

-less-range-information

Limit range information displayed in results

Syntax

-less-range-information

Description

-less-range-information limits the amount of range information displayed in the
results.

By enabling this option, range information is available only for assignments, not read
operations.

Because computing range information for read operations can take a long time, selecting
this option can reduce verification time significantly.

Examples

Consider the following code:
X =Yy +z
By enabling this option:

polyspace-code-prover-nodesktop -less-range-information
range information is available only when you place your cursor over X. Without this
option enabled, range information is available for X, y, and z.

See Also

polyspaceCodeProver

Related Examples

. “Run Verification from Command Line”

3-17

3 Polyspace Analysis Options — Command Line Only

. “Use Range Information in Results Manager”

3-18

-Max-processes

“MAax-processes

Specify the maximum number of processes that can run simultaneously on a multicore
system.

Syntax

-max-processes num

Description
—-max-processes num specifies the maximum number of processes that can run

simultaneously on a multicore system. The valid range of num is 1 to 128. The default is
4.

Examples

Disable parallel processing during the analysis.

polyspace-code-prover-nodesktop -max-processes 1

See Also

polyspaceCodeProver

Related Examples

. “Run Verification from Command Line”

3-19

3 Polyspace Analysis Options — Command Line Only

3-20

-no-pointer-information

Turn off pointer information in your results

Syntax

-no-pointer-information

Description

-no-pointer-information turns off the pointer information in your analysis results.
When you select this option, the software does not provide pointer information through
tooltips. As computing pointer information can take a long time, selecting this option can
significantly reduce analysis time.

Examples

Consider the following example:

X = *p;

If you do not select this option (the default), the software displays pointer information
when you place the cursor on p or *. If you select this option, the software does not
display information about the pointer.

polyspace-code-prover-nodesktop -no-pointer-information

See Also

polyspaceCodeProver

Related Examples

. “Run Verification from Command Line”

-options-file

-options-file

Run Polyspace using list of options

Syntax

-options-file file

Description

-options-file file specifies a file which lists your analysis options. The file must be
a text file with each option on a separate line. Use # to add comments to this file.

Examples

1 Create an options file called Iistofoptions.txt with all your options. For
example:

#These are the options for MyCodeProverProject

-lang ¢

-prog MyCodeProverProject

—author jsmith

-sources ''mymain.c,funAlgebra.c,funGeometry.c"

-0S-target no-predefined-0S

-target x86_64

-dialect none

-dos

-misra2 required-rules

—-includes-to-ignore all-headers

-main-generator

-results-dir C:\Polyspace\MyCodeProverProject
2 Run Polyspace using options in the file listofoptions.txt.

polyspace-code-prover-nodesktop -options-file listofoptions.txt

See Also

polyspaceCodeProver | polyspaceConfigure

3-21

3 Polyspace Analysis Options — Command Line Only

Related Examples

. “Run Verification from Command Line”

3-22

“prog

-prog

Specify name of project

Syntax

-prog projectName

Description

-prog projectName specifies the name of your Polyspace project. This name must use

only letters, numbers, underscores (_), dashes (-), or periods (.).

Examples
Assign a session name to your Polyspace Project.

polyspace-code-prover-nodesktop -prog MyApp

See Also

-author | -date | polyspaceCodeProver

Related Examples

. “Run Verification from Command Line”

3-23

3 Polyspace Analysis Options — Command Line Only

3-24

-report-output-name

Specify name of report

Syntax

-report-output-name reportName

Description
-report-output-name reportName specifies the name of an analysis report.

The default name for a report is Prog_Template.Format:

* Prog is the name of the project specified by -prog.
+ TemplateName is the type of report template specified by —report-template.
* Format is the file extension for the report specified by -report-output-format.

Examples

Specify the name of the analysis report.

polyspace-code-prover-nodesktop -report-template Developer
-report-output-name Airbag_v3.rtf

See Also
“Output format (C/C++)” on page 1-122 | “Report template (C/C++)” |
polyspaceCodeProver

Related Examples
. “Run Verification from Command Line”

. “Generate Report from Command Line”

-results-dir

-results-dir

Specify the results folder

Syntax

-results-dir

Description

-results-dir specifies where to save the analysis results. The default location at
the command line is the current folder. In the user interface, the default location is
C:Polyspace_Results.

Examples

Specify to store your results in the RESULTS folder.
polyspace-code-prover-nodesktop -results-dir RESULTS ...

export RESULTS=results_"date + %d%B_%HH%M_%A*"
polyspace-code-prover-nodesktop -results-dir “pwd"/$RESULTS

See Also

polyspaceCodeProver

Related Examples

. “Run Verification from Command Line”

3-25

3 Polyspace Analysis Options — Command Line Only

-scheduler

Specify cluster or job scheduler

Syntax

-scheduler schedulingOption

Description

-scheduler schedulingOption specifies the head node of the MDCS cluster or
MATLAB job scheduler on the node host. Use this command to manage the cluster, or to
specify where to run batch analyses.

Examples

Run a batch analysis on a remote server.

polyspace-code-prover-nodesktop -batch -scheduler NodeHost
polyspace-code-prover-nodesktop -batch -scheduler 192.168.1.124:12400
polyspace-code-prover-nodesktop -batch -scheduler MJSName@NodeHost

polyspace-job-manager listjobs -scheduler NodeHost

See Also

polyspaceCodeProver | polyspaceJdobsManager | polyspaceJobsManager

Related Examples
. “Run Verification from Command Line”

. “Manage Remote Verifications”

3-26

-sources

=sources

Specify source files

Syntax

-sources filel[,file2,...]
-sources filel -sources file2

Description

-sources filel[,file2,...] or -sources filel -sources file2 specifies the
list of source files that you want to analyze. The list must be in quotations and separated
by commas. You can use standard UNIX wildcards with this option to specify your
sources.

The source files are compiled in the order in which they are specified.

Examples

Analyze the files mymain.c, funAlgebra.c, and funGeometry.c

polyspace-code-prover-nodesktop -sources mymain.c
-sources funAlgebra.c -sources funGeometry.c

See Also

polyspaceCodeProver

Related Examples

. “Run Verification from Command Line”

3-27

3 Polyspace Analysis Options — Command Line Only

-sources-list-file

Specify file containing list of sources

Syntax

-sources-list-file "filename"

Description

-sources-list-file "filename" specifies a text file that lists each file name that
you want to analyze.

The file must list only one source file per line, and each file name must be given with its
absolute path.

This option is available only in batch analysis mode.

Examples

Run analysis on files listed in Files.txt.

polyspace-code-prover-nodesktop -batch -scheduler NODEHOST
-sources-list-file "C:\Analysis\files.txt

polyspace-code-prover-nodesktop -batch -scheduler NODEHOST
-sources-list-file "/home/polyspace/fTiles. txt"

See Also

polyspaceCodeProver

Related Examples

. “Run Verification from Command Line”

3-28

-tmp-dir-in-results-dir

-tmp-dir-in-resulis-dir

Keep temporary files in results folder

Syntax

-tmp-dir-in-results-dir

Description

—-tmp-dir-in-results-dir keeps temporary files in the results folder. By default,
temporary files are stored in the standard /temp or C:\Temp folder. This option stores
the temporary files in a subfolder of the results folder. Use this option only when the
temporary folder partition does not have enough disk space. If the results folder is
mounted on a network drive, this option can slow down your processor.

Examples

Store temporary files in the results folder.

polyspace-code-prover-nodesktop -tmp-dir-in-results-dir

See Also

polyspaceCodeProver

Related Examples

. “Run Verification from Command Line”

3-29

3 Polyspace Analysis Options — Command Line Only

3-30

-vlersion]

Display Polyspace version number

Syntax

-V
-version

Description

-V or -version displays the version number of your Polyspace product.

Examples

Display the version number of your Polyspace product.

polyspace-code-prover-nodesktop -v
produces output such as:

Polyspace Code Prover 9.0 (R2013b)

Copyright 1990-2013 The Mathworks, Inc.

See Also

polyspaceCodeProver

Related Examples

. “Run Verification from Command Line”

-verif-version

-verif-version

Assign a version identifier

Syntax

-verif-version id

Description
-verif-version id assigns a verification identifier, 1d, to identify the verification.
You can use this identifier to refer to different verifications at the command line. For

example, you can import comments from a previous verification using the verification
identifier.

Examples

Assign a verification identifier.

polyspace-code-prover-nodesktop -verif-version 1.3

See Also

polyspaceCodeProver

Related Examples

. “Run Verification from Command Line”

3-31

3-32

Check Reference

4 Check Reference

4-2

Absolute address

Absolute address is assigned to pointer

Description

This check determines whether an absolute address is assigned to a pointer.

Examples

Absolute address assigned to pointer

void main(Q) {
int *p = (int *)0x32;
int x = *p;
p++;
X = *p;

}

In this example, p is assigned an absolute address. The check is orange because the
software does not have information about the absolute address and cannot verify, for
example, the validity of the address and the availability of memory.

Following this check:

* Polyspace considers that p points to a valid memory location. Therefore the Illegally
dereferenced pointer check on the following line is green.

* In the next two lines, the pointer p is incremented and then dereferenced. In this
case, an Illegally dereferenced pointer check appears on the dereference and not
an Absolute address check even though p still points to an absolute address.

Correction — Use Polyspace analysis option

You can use absolute addresses in your code and not produce an orange Absolute
address error. To allow absolute addresses, on the Configuration pane, under
Verification Assumptions, select Green absolute address checks.

void main() {

Absolute address

int *p = (int *)0x32;
int X = *p;

p++;

X = *p;

Check Information

Category: Static memory
Language: C | C++
Acronym: ABS_ADDR

More About
“Review Orange Check”

4-3

4 Check Reference

4-4

Correctness condition

Mismatch occurs during pointer cast or function pointer use

Description
This check determines whether:

* An array is mapped to a larger array through a pointer cast
+ A function pointer points to a function with a valid prototype

+ A global variable falls outside the range specified through the Global Assert mode.

Examples

Array is mapped to larger array

typedef int smallArray[10];
typedef int largeArray[100];

void main() {
largeArray mylLargeArray;
smallArray *smallArrayPtr
largeArray *largeArrayPtr

(smallArray*) &mylLargeArray;
(largeArray*) smallArrayPtr;

}

In this example:

+ In the first pointer cast, a pointer of type largeArray is cast to a pointer of type
smal lArray. Because the data type smal lArray represents a smaller array, the
Correctness condition check is green.

* In the second pointer cast, a pointer of type smal lArray is cast to a pointer of type
largeArray. Because the data type largeArray represents a larger array, the
Correctness condition check is red.

Function pointer does not point to function

typedef void (*callBack) (float data);

Correctness condition

typedef struct {
char funcName[20];
callBack func;

} funcStruct;

funcStruct myFuncStruct;

void main() {
float val = 0.0;
myFuncStruct.func(val);

}

In this example, because the global variable myFuncStruct is not initialized, the
function pointer myFuncStruct. func contains NULL. Therefore, when the pointer
myFuncStruct.func is dereferenced, the Correctness condition check produces a red
error.

Function pointer points to function through absolute address usage

#define MAX_MEMSEG 32764
typedef void (*ptrFunc)(int memseqg);
ptrFunc operation = (ptrFunc)(0x003c);

void main() {
for (int i=1; i<=MAX_MEMSEG; i++)
operation(i);

}

In this example, the function pointer operation is cast to the contents of a location

in memory. Because Polyspace cannot determine whether the location contains a
variable or a function code, the Absolute address check produces an orange error on
the cast. Subsequently, when the pointer operation is dereferenced, the Correctness
condition check produces a red error.

Function pointer points to function with wrong argument type
typedef struct {

double real;

double imag;

} complex;

typedef int (*typeFuncPtr) (complex*);

4-5

4 Check Reference

4-6

int func(int* x);

void main() {
typeFuncPtr funcPtr
int arg = 0, result

func;
funcPtr(&arg);

}

In this example, the function pointer FuncPtr points to a function with argument type
complex*. However, it is assigned the function func whose argument type is int*.
Because of this type mismatch, the Correctness condition check produces a red error.

Function pointer points to function with wrong number of arguments
typedef int (*typeFuncPtr) (int, int);
int func(int);

void main() {

typeFuncPtr funcPtr = (typeFuncPtr)func;

int argl = 0, arg2 = 0, result = funcPtr(argl,arg2);
}

In this example, the function pointer funcPtr points to a function with two Int
arguments. However, it is assigned the function func which has one Int argument only.
Because of this mismatch in number of arguments, the Correctness condition check
produces a red error.

Function pointer points to function with wrong return type

typedef double (*typeFuncPtr) (int);
int func(int);

void main(Q) {
typeFuncPtr funcPtr = (typeFuncPtr)func;
int arg = 0;
double result = funcPtr(arg);

}

In this example, the function pointer funcPtr points to a function with return type
double. However, it is assigned the function func whose return type is int. Because of
this mismatch in return types, the Correctness condition check produces a red error.

Correctness condition

Variable falls outside Global Assert range

int glob = 0;
int func(Q;

void main(Q) {

glob = 5;
glob = func(Q;
glob+= 20;

}
In this example, a range of 0. . 10 was specified for the global variable glob.

* In the statement glob=5;, a green Correctness condition check appears on glob.
* In the statement glob=func();, an orange Correctness condition check appears
on glob because the return value of stubbed function func can be outside 0. .10.

After this statement, Polyspace considers that glob has values in 0. . 10.

* In the statement glob+=20;, a red Correctness condition check appears on glob
because after the addition, glob has values in 20. .30.

Check Information

Category: Other
Language: C | C++
Acronym: COR

See Also

“Variable/function range setup (C/C++)”

More About
. “Check Global Variable Ranges with Global Assert”
. “Review Orange Check”

4-7

4 Check Reference

C++ specific checks

C++ specific invalid operations occur

Description

This check on C++ code operations determine whether the operations are valid. The
checks look for a range of invalid behaviors:

* Array size is not strictly positive.
+ typeid operator dereferences a NULL pointer.
+ dynamic_cast operator performs an invalid cast.

Examples

Array size is not strictly positive

class License {
protected:
int numberOfUsers;
char (*userList)[20];
int *licenselList;
public:
License(int numberOfLicenses);
void initializeList();
char* getUser(int);
int getLicense(int);

¥

License::License(int numberOfLicenses) : numberOfUsers(numberOfLicenses) {
userList = new char [numberOfUsers][20];
licenselList = new int [numberOfUsers];
initializeList();

}

int getNumberOfLicenses();
int getlndexForSearch();

void main() {

C++ specific checks

int n = getNumberOfLicenses();

if(nh >= 0 && n <= 100) {
License myFirm(n);
int index = getlndexForSearch();
myFirm.getUser(index);
myFirm.getLicense(index);

}

In this example, the argument n to the constructor License: :License falls in two
categories:

* n = 0: When the new operator uses this argument, the C++ specific checks produce
an error.

* n > 0: When the new operator uses this argument, the C++ specific checks is
green.

Combining the two categories of arguments, the C++ specific checks produce an orange
error on the new operator.

typeid operator dereferences a NULL pointer

#include <iostream>
#include <typeinfo>
#define Pl 3.142

class Shape {

public:
Shape();
virtual void setVal(double) = 0;
virtual double area() = 0;

}:

class Circle: public Shape {
double radius;
public:
Circle(double radiusVval):Shape() {
setVal (radiusval);

}

void setVal(double radiusval) {
if(radiusval > 0)
radius = radiusVal;

4 Check Reference

else
radius = 0;

}

double area() {
return (Pl * radius * radius);
}
}:

class Square: public Shape {
double side;

public:
Square(double sideVal):Shape() {
setVal(sideVval);
}

void setVal(double sideval) {
if(sideval > 0)
side = sideVal;
else
side = 0;

}

double area() {
return (side * side);
}
}:

Shape* getShapePtr();

void main() {
Shape* shapePtr = getShapePtr();
double val;

if(typeid(*shapePtr)==typeid(Circle)) {
std: :cout<<"Enter radius:'';
std::cin>>val;
shapePtr -> setVal(val);
std: :cout<<"Area of circle = "<<shapePtr -> area();

}

else if(typeid(*shapePtr) == typeid(Square)) {
std: :cout<<"Enter side:";
std::cin>>val;
shapePtr -> setVal(val);

4-10

C++ specific checks

std: :cout<<"Area of square = '<<shapePtr -> area();
}
else {

std: :cout<<"No valid shape.";
}

}

In this example, the Shape* pointer shapePtr returned by getShapePtr () function
can be:

+ NULL: When shapePtr is used with the typeid operator, the C++ specific checks
produce an error.

* Not NULL: When shapePtr is used with the typeid operator, the C++ specific
checks is green.

Combining these two cases, the C++ specific checks produce an orange error on the
typeid operator in the first 1 statement branch in main.

Following this orange error, Polyspace considers that shapePtr is not NULL. Therefore,
the C++ specific checks on the typeid operator in the second 1 F statement branch is
green.

Check Information
Category: C++
Language: C++
Acronym: CPP

More About
. “Review Orange Check”

4-11

4 Check Reference

Division by zero

Division by zero occurs

Description

This check determines whether the right operand of a division or modulus operation is
ZEro.

Examples

Red integer division by zero

#include <stdio.h>

void main(Q) {
int x=2;
printf(*'Quotient=%d",100/(x-2));
}

In this example, the denominator X-2 is zero.
Correction — Check for zero denominator
One possible correction is to check for a zero denominator before division.

In a complex code, it is difficult to keep track of values and avoid zero denominators.
Therefore, it is good practice to check for zero denominator before every division.

#include <stdio.h>
int input(Q);
void main() {
int x=input();
if(x>0) { /7/Avoid overflow
iIf(x1=2 && x>0)
printf(*'Quotient=%d",100/(x-2));
else
printf(*'Zero denominator.');

4-12

Division by zero

Red integer division by zero after for loop

#include <stdio.h>
void main() {
int x=-10;
for (int i=0; i<10; i++)
X+=3;
printf(""Quotient=%d",100/(x-20));

In this example, the denominator x-20 is zero.
Correction — Check for zero denominator
One possible correction is to check for a zero denominator before division.

After several iterations of a For loop, it is difficult to keep track of values and avoid zero
denominators. Therefore, it is good practice to check for zero denominator before every
division.

#include <stdio.h>

#define MAX 10000
int inputQ);

void main(Q) {
int x=input(Q);
for (int i=0; i<10; i++) {
if(x < MAX) //Avoid overflow

X+=3;
}
if(x>0) { //Avoid overflow
iT(x1=20)
printf(*"'Quotient=%d",100/(x-20));
else
printf(*'Zero denominator.');
}

}

Orange integer division by zero inside for loop

#include<stdio.h>

4-13

4 Check Reference

4-14

void main() {
printf(*"'Sequence of ratios: \n");
for(int count=-100; count<=100; count++)
printf(*" _2f ', 1/count);

}

In this example, count runs from -100 to 100 through zero. When count is zero, the
Division by zero check returns a red error. Because the check returns green in the
other for loop runs, the /7 symbol is orange.

There is also a red Non-terminating loop error on the for loop. This red error
indicates a definite error in one of the loop runs.

Correction — Check for zero denominator

One possible correction is to check for a zero denominator before division.

#include<stdio.h>

void main(Q) {
printf("'Sequence of ratios: \n");
for(int count=-100; count<=100; count++) {
if(count 1= 0)
printf(’" .2f "', 1/count);
else
printf(*"" Infinite ");

}

Orange float division by zero inside for loop

#include <stdio.h>
#define stepSize 0.1

void main() {
float divisor = -1.0;
int numberOfSteps = (int) ((2*1.0)/stepSize);

printf("'Divisor running from -1.0 to 1.0\n");

for(int count = 1; count <= numberOfSteps; count++) {
divisor += stepSize;
printf(*"" .2F ", 1.0/divisor);

Division by zero

In this example, divisor runs from —1.0 to 1.0 through 0.0. When divisor is 0.0, the
Division by zero check returns a red error. Because the check returns green in the
other for loop runs, the /7 symbol is orange.

There is no red Non-terminating loop error on the for loop. The red error does not
appear because Polyspace approximates the values of divisor by a broader range.
Therefore, Polyspace cannot determine if there is a definite error in one of the loop runs.

Correction — Check for zero denominator

One possible correction is to check for a zero denominator before division. For float
variables, do not check if the denominator is exactly zero. Instead, check whether the
denominator is in a narrow range around zero.

#include <stdio.h>
#define stepSize 0.1

void main(Q) {
float divisor = -1.0;
int numberOfSteps = (int)((2*1.0)/stepSize);

printf("Divisor running from -1.0 to 1.0\n");;
for(int count = 1; count <= numberOfSteps; count++) {
divisor += stepSize;
if(divisor < -0.00001 || divisor > 0.00001)
printf("" .2f ", 1.0/divisor);
else
printf("" Infinite "™);

Check Information

Category: Numerical
Language: C | C++
Acronym: ZDV

More About
. “Review Orange Check”

4-15

4 Check Reference

Exception handling

Exception handling

Description
This check determines whether:

+ A function call throws an exception.

* The exception is caught.

This check appears on both a function call as well as the function body. Use this check to
follow the propagation of error from an entry-point function down the branches of the call
tree.

Examples

Exception in calls to function
#include <vector>
class error {};

class initialVector {
private:
int sizeVector;
vector<int> table;
public:
initialVector(int size) {
sizeVector = size;
table.resize(sizeVector);
Initialize();
¥
void Initialize();
int getValue(int number) throw(error);

}:

void initialVector::Initialize() {

4-16

Exception handling

for(int i=0; i<table.size(); i++)
table[1]=0;

int initialVector::getValue(int index) throw(error) {
if(index >=0 && index < sizeVector)

return table[index];
else throw error();

void main() {
initialVector *vectorPtr = new initialVector(5);
vectorPtr -> getValue(5);

}

In this example, the call to method initialVector: :getValue throws an exception.
This exception appears as a red Exception handling error on both the function call and
function body. A red Exception handling error also appears on main because a function
call inside main throws an exception.

Exception handled through try/catch construct

class error {

errorO { }

error(const error&) { }

j

void funcNegative() {

try {
throw error() ;
}

catch (error NegativeError) {

}
}

void funcPositive() {

try {
i

catch (error PositiveError) {

}

4-17

4 Check Reference

4-18

int input(Q);
void main(Q)

{
int val=input();
if(val < 0)
funcNegative();
else
funcPositive();
}

In this example:

* The call to funcNegative throws an exception. However, the exception is placed
inside a try block. Therefore, the exception propagates to the corresponding catch
block and does not continue farther. The Exception handling check on the function
body, function call, and the main function appears green.

* The call to funcPositive does not throw an exception in the try block. Therefore,
the catch block following the try block appears gray.

Exception in calls to constructor

class error {

}:
class X
{
public:
X0 {
throw error(Q);
}
X0 {
) ;
}:
int main() {
try {
X * px = new X ;
delete X;
} catch (error) {
assert(l) ;
}
}

Exception handling

In this example, the new operator calls the constructor X: : X(). The constructor

throws an exception. The exception appears as a red Exception handling error on the
constructor body and the new operator. The exception then propagates to the catch block
and does not continue farther. Therefore the Exception handling check on the main
function appears green.

The green assert statement shows that the exception has propagated to the catch
block.

Exception in calls to destructor

class error {

};
class X
{
public:
XO {
3
~XO {
throw error();
3
};
int main() {
try {
X * px = new X ;
delete px;
} catch (error) {
assert(l) ;
3
}

In this example, the delete operator calls the destructor X: :~X(). The destructor
throws an exception that appears as a red error on the destructor body and dashed red
on the delete operator. The exception does not propagate to the catch block. The code
following the exception is not verified. This behavior enforces the requirement that a
destructor must not throw an exception.

The black assert statement suggests that the exception has not propagated to the
catch block.

4-19

4 Check Reference

4-20

Exception in infinite loop

#include<stdio.h>
#define SIZE 100

int arr[SIZE];
int getindex();

int runningSum() {
int index, sum=0;
while(1) {
index=getindex();
if(index < 0 || index >= SIZE)
throw int(1);
sum+=arr[index];

}

void main(Q) {
printf("The sum of elements is: %d",runningSum());
}

In this example, the runningSum function throws an exception only if Index is outside
the range [0,S1ZE]. Typically, an error that occurs due to instructions in an IFf
statement is orange, not red. The error is orange because an alternate execution path
that does not involve the if statement does not produce an error. Here, because the
loop is infinite, there is no alternate execution path that goes outside the loop. The only
way to go outside the loop is through the exception in the if statement. Therefore, the
Exception handling error is red.

Type mismatch between throw declaration and usage

#include <string>

class negativeBalance {

public:
negativeBalance(const string & s): errorMessage(s) {}
~negativeBalance() {}

private:
string errorMessage;

}:

class Account {

Exception handling

public:

Account(long initVal):balance(initval) {}

~Account() {}

void debitAccount(long debitAmount) throw (int, char);
private:

long balance;

}:

void Account: :debitAccount(long debitAmount) throw (int, char) {
if((balance - debitAmount) < 0)
throw negativeBalance(*'Negative balance™);
else
balance -= debitAmount;

}

void main() {
Account *myAccount = new Account(1000);

try {
myAccount -> debitAccount(2000);
}
catch(negativeBalance &) {
}

delete myAccount;

}

In this example, the arguments to throw in the Account: :debitAccount method are
declared to be either Int or char. However, the method throws an exception with type
negativeBalance. Therefore, the Exception handling check produces a red error on
throw.

Check Information
Category: C++
Language: C++
Acronym: EXC

More About
. “Review Orange Check”

4-21

4 Check Reference

Function not reachable

Function is called from unreachable part of code

Description

This check appears on a function definition. The check appears gray if the function is
called only from an unreachable part of the code. The unreachable code can occur in one
of the following ways:

* The code is reached through a condition that is always false.
* The code follows a break or return statement.
* The code follows a red check.

If your code does not contain a main function, this check is disabled

To detect functions that are called from unreachable code, on the Configuration pane,
select Check Behavior. For Detect uncalled functions, select all or cal led-from-
unreachable.

To find where the function is called, use the Call Hierarchy pane. For more
information, see “View Call Tree for Functions”.

Examples

Function Call from Unreachable Branch of Condition

#include<stdio.h>
#define SI1ZE 100

void increase(int* arr, int index);

void printError() {
printfF(""Array index exceeds array size.');

}

void main() {
int arr[SIZE],i;

4-22

Function not reachable

for(i=0; i<SIZE; i++)
arr[i]=0;

for(i=0; iI<SIZE; i++) {
if(i<SI1ZE)
increase(arr,i);
else
printError();

}

In this example, in the second for loop in main, i is always less than SIZE. Therefore,
the el'se branch of the condition i F(1<SIZE) is never reached. Because the function
printError is called from the else branch alone, there is a gray Function not
reachable check on the definition of printError.

Function Call Following Red Error

#include<stdio.h>

int getNum(void);

void printSuccess() {
printf("The operation is complete.");
}

void main(Q) {
int num=getNum(), den=0;
printf("The ratio is %.2f", num/den);
printSuccess();

}

In this example, the function printSucess is called following a red Division by Zero
error. Therefore, there is a gray Function not reachable check on the definition of
printSuccess.

Function Call from Another Unreachable Function
#include<stdio.h>

#define MAX 1000
#define MIN O

4-23

4 Check Reference

4-24

int getNum(void);

void checkRatio(double ratio) {
checkUpperBound(ratio);
checkLowerBound(ratio);

}

void checkUpperBound(double ratio) {
if(ratio < MAX)
printf(""'The ratio is within bounds.');
}

void checkLowerBound(double ratio) {
if(ratio > MIN)
printf(""The ratio is within bounds.');
}

void main() {
int num=getNum(), den=0;
double ratio;
ratio=num/den;
checkRatio(ratio);

}

In this example, the function checkRatio follows a red Division by Zero error.
Therefore, there is a gray Function not reachable error on the definition of
checkRatio. Because checkUpperBound and checkLowerBound are called only from
checkRatio, there is also a gray Function not reachable check on their definitions.

Function Call from Unreachable Code Using Function Pointer

#include<stdio.h>

int getNum(void);
int getChoice(void);

int num, den, choice;
double ratio;

void display(void) {
printf("Numerator = %d, Denominator = %d", num, den);

}

void display2(void) {

Function not reachable

printf(""Ratio = %.2Ff",ratio);

void main(Q) {
void (*fptr)(void);

choice = getChoice();
if(choice == 0)

fptr = &display;
else

fptr = &display?2;

num = getNum();
den = 0O;
ratio = num/den;

Cfptr) O;
}

In this example, depending on the value of choice, the function pointer fptr can point
to either display or to display2. The call through fptr follows a red Division by
Zero error. Because display and display?2 are called only through fptr, a gray
Function not reachable check appears on their definitions.

Check Information
Category: Data flow
Language: C | C++
Acronym: FNR

See Also

“Detect uncalled functions (C/C++)” | “Function not called” | “Unreachable code”

4-25

4 Check Reference

4-26

Function returns a value

C++ function does not return value when expected

Description

This check determines whether a function with a return type other than void returns a
value. This check appears on the function definition.

Examples

Function does not return value for any input

#include <stdio.h>
int input(Q);
int inputRep();

int reply(int msg) {
int rep = inputRep();
if (msg > 0) return rep;

}

void main(void) {
int ch = input(), ans;
if (ch<=0)
ans = reply(ch);
printf(*'The answer is %d.",ans);

}

In this example, for all values of ch, reply(ch) has no return value. Therefore the
Function returns a value check returns a red error on the definition of reply().

Correction — Return value for all inputs

One possible correction is to return a value for all inputs to reply ().

#include <stdio.h>
int input(Q);

Function returns a value

int inputRep();

int reply(int msg) {
int rep = inputRep();
if (msg > 0) return rep;
return O;

}

void main(void) {
int ch = input(), ans;
if (ch<=0)
ans = reply(ch);
printf(*'The answer is %d.",ans);

}

Function does not return value for some inputs

#include <stdio.h>
int input(Q);
int inputRep(int);

int reply(int msg) {
int rep = inputRep(msg);
if (msg > 0) return rep;

}

void main(void) {
int ch = input(), ans;
if (ch<10)
ans = reply(ch);
else
ans = reply(10);
printf("The answer is %d.",ans);

}

In this example, in the first branch of the i1 f statement, the value of ch can be divided
into two ranges:

*+ ch < = 0: For the function call reply(ch), there is no return value.
+ ch > 0andch < 10: For the function call reply(ch), there is a return value.

Therefore the Function returns a value check returns an orange error on the
definition of reply ().

4-27

4 Check Reference

Correction — Return value for all inputs

One possible correction is to return a value for all inputs to reply ().

#include <stdio.h>
int input(Q);
int inputRep(int);

int reply(int msg) {

int rep = inputRep(msg);
if (msg > 0) return rep;
return O;

}

void main(void) {
int ch = input(), ans;
it (ch<10)
ans = reply(ch);
else
ans = reply(10);
printf(""The answer is %d.",ans);

Check Information
Category: C++
Language: C++
Acronym: FRV

See Also

“Initialized return value”

More About
. “Review Orange Check”

4-28

Function not called

Function not called

Function 1s defined but not called

Description

This check on a function definition determines if the function is called anywhere in the
code. This check is disabled if your code does not contain a main function.

Use this check to satisfy ISO 26262 requirements about function coverage. For example,
see table 15 of ISO 26262, part 6.

To detect functions that are not called, on the Configuration pane, select Check
Behavior. For Detect uncalled functions, select all or never-called.

Examples

Function not called

#define max 100

int var;

int getValue(void);

int getSaturation(void);

void main() {
int saturation = getSaturation(),val;
for(int index=1; index<=max; index++) {
val = getvValue();
if(val>0 && val<10)
var += val;
if(var > saturation)

var=0;
}
}
void reset() {
var=0;
}

4-29

4 Check Reference

4-30

In this example, the function reset is defined but not called. Therefore, a gray
Function not called check appears on the definition of reset.

Correction: Call Function

One possible correction is to call the function reset. In this example, the function call
reset serves the same purpose as instruction var=0;. Therefore, replace the instruction
with the function call.

#define max 100

int var;

int getvalue(void);

int getSaturation(void);

void main(Q) {
int saturation = getSaturation(),val;
for(int index=1; index<=max; index++) {
val = getvalue();
if(val>0 && val<10)
var += val;
if(var > saturation)

reset();
3
}
void reset() {
var=0;
}

Function Called from Another Uncalled Function

#define max 100

int var;

int numberOfResets;
int getvValue();

int getSaturation();

void main() {
int saturation = getSaturation(),val;
for(int index=1; index<=max; index++) {
val = getvalue(Q);
if(val>0 && val<10)
var += val;
if(var > saturation) {

Function not called

numberOfResets++;
var=0;
he
T
¥
void reset() {
updateCounter();
var=0;
¥

void updateCounter() {
numberOfResets++;

}

In this example, the function reset is defined but not called. Since the function
updateCounter is called only from reset, a gray Function not called error appears
on the definition of updateCounter.

Correction: Call Function

One possible correction is to call the function reset. In this example, the function
call reset serves the same purpose as the instructions in the branch of i f(var >
saturation). Therefore, replace the instructions with the function call.

#define max 100

int var;

int numberOfResets;

int getValue(void);

int getSaturation(void);

void main() {
int saturation = getSaturation(),val;
for(int index=1; index<=max; index++) {
val = getvValue();
if(val>0 && val<10)
var += val;
if(var > saturation)
reset();

}

void reset() {

4-31

4 Check Reference

updateCounter();
var=0;

}

void updateCounter() {
numberOfResets++;

}

Check Information

Category: Data flow
Language: C | C++
Acronym: FNC

See Also

“Detect uncalled functions (C/C++)” | “Function not reachable”

4-32

lllegally dereferenced pointer

lllegally dereferenced pointer

Pointer 1s dereferenced outside bounds

Description

This check on a pointer dereference determines whether the pointer points outside its
bounds.

When you assign an address to a pointer, a block of memory is associated with the
pointer. You cannot access memory beyond that block using the pointer.

Examples

Pointer points outside array bounds
#define Size 1024
int input(void);
void main() {
int arr[Size];
int *p = arr;

for (int index = 0; index < Size ; index++, p++) {
*p = input(Q);
}

*p = input();
}

In this example:

+ Before the for loop, p points to the beginning of the array arr.
+ After the For loop, p points outside the array.

The Illegally dereferenced pointer check on dereference of p after the for loop
produces a red error.

4-33

4 Check Reference

4-34

Correction — Remove illegal dereference

One possible correction is to remove the illegal dereference of p after the for loop.
#define Size 1024
int input(void);

void main() {
int arr[Size];
int *p = arr;

for (int index = 0; index < Size ; index++, p++) {
*p = inputQ);
}
}

Pointer points outside structure field

typedef struct S {
int f1;
int f2;
int f3;

} S

void Initialize(int *ptr) {
*ptr = 0;
*(ptr+1)
*(ptr+2)

0;
0;

}

void main(void) {
S myStruct;
Initialize(&myStruct.f1);

}

In this example, in the body of Initialize, ptr is an Int pointer that points to the
first field of the structure. When you attempt to access the second field through ptr, the
Illegally dereferenced pointer check produces a red error.

Correction — Avoid memory access outside structure field

One possible correction is to pass a pointer to the entire structure to Initialize.

lllegally dereferenced pointer

typedef struct S {

int f1;
int £2;
int 3;
}s;
void Initialize(S* ptr) {
ptr->fl = 0O;
ptr->f2 = 0;
ptr->f3 = 0;

}
void main(void) {
S myStruct;

Initialize(&myStruct);
}

NULL pointer is dereferenced
#include<stdlib.h>
void main(Q) {

int *ptr=NULL;

*ptr=0;
}

In this example, ptr is assigned the value NULL. Therefore when you dereference ptr,
the Illegally dereferenced pointer check produces a red error.

Correction — Avoid NULL pointer dereference

One possible correction is to initialize ptr with the address of a variable instead of NULL.

void main() {
int var;
int *ptr=&var;
*ptr=0;

¥

Offset on NULL pointer

int getOffset(void);

4-35

4 Check Reference

4-36

void main() {
int *ptr = (int*) 0 + getOffset();
if(ptr = (int*)0)
*ptr = 0;
}

In this example, although an offset is added to (int*) 0, Polyspace does not treat
the result as a valid address. Therefore when you dereference ptr, the Illegally
dereferenced pointer check produces a red error.

Bit field type is incorrect

struct flagCollection {
unsigned int flagl:
unsigned int flag2:
unsigned int flag3:
unsigned int flag4:
unsigned int flag5:
unsigned int flag6:
unsigned int flag7:

RPRRRRRR
M

}:
char getFlag(void);

int main(Q)

{
unsigned char myFlag = getFlag();
struct flagCollection* myFlagCollection;
myFlagCollection = (struct flagCollection *) &myFlag;
if (myFlagCollection -> flagl == 1)
return 1;
return O;
}

In this example:

+ The fields of FlagCol lection have type unsigned int. Therefore, a

flagCollection structure requires 32 bits of memory in a 32-bit architecture even

though the fields themselves occupy 7 bits.

* When you cast a char address &myFlag to a flagCol lection pointer
myFlagCol lection, you assign only 8 bits of memory to the pointer. Therefore,

lllegally dereferenced pointer

the Illegally dereferenced pointer check on dereference of myFlagCol lection
produces a red error.

Correction — Use correct type for bit fields

One possible correction is to use unsigned char as field type of FlagCollection
instead of unsigned int. In this case:

* The structure flagCol lection requires 8 bits of memory.

* When you cast the char address &myFlag to the flagCol lection pointer
myFlagCol lection, you also assign 8 bits of memory to the pointer. Therefore, the
Illegally dereferenced pointer check on dereference of myFlagCollection is
green.

struct flagCollection {
unsigned char flagl:
unsigned char flag2:
unsigned char flag3:
unsigned char flag4:
unsigned char flag5:
unsigned char flag6:
unsigned char flag7:

RPRRRRRE

};
char getFlag(void);

int mainQ)
{
unsigned char myFlag = getFlag();
struct flagCollection* myFlagCollection;
myFlagCollection = (struct flagCollection *) &myFlag;
if (nyFlagCollection -> flagl == 1)
return 1;
return O;

}

Return value of mal 1oc is not checked for NULL

void main(void)

{

char *p = (char*)malloc(1);;
char *q = p;
*q - -a-;

4-37

4 Check Reference

4-38

}

In this example, mal loc can return NULL to p. Therefore, when you assign p to g and
dereference g, the Illegally dereferenced pointer check produces a red error.

Correction — Check return value of mal 1oc for NULL

One possible correction is to check p for NULL before derferencing g.

#include<stdlib.h>
void main(void)

{
char *p = (char*)malloc(1);;
char *q = p;
if(p!=NULL) *q = "a";

}

Pointer to union gets insufficient memory from mal loc

#include <stdlib.h>
enum typeName {CHAR, INT};

typedef struct {
enum typeName myTypeName;
union {
char myChar;
int mylnt;
} myvar;
3} myType;

void main() {
myType* myTypePtr;
myTypePtr = (myType*)malloc(sizeof(int) + sizeof(char));
if(myTypePtr != NULL) {
myTypePtr->myTypeName = INT;

}
In this example:

* Because the union myVar has an int variable as a field, it must be assigned 4 bytes
in a 32-bit architecture. Therefore, the structure myType must be assigned 4+4 = 8
bytes.

lllegally dereferenced pointer

+ malloc returns sizeof(int) + sizeof(char)=4+1=5 bytes of memory to
myTypePtr, a pointer to a myType structure. Therefore, when you dereference
myTypePtr, the Illegally dereferenced pointer check returns a red error.

Correction — Assign sufficient memory to pointer

One possible correction is to assign 8 bytes of memory to myTypePtr before dereference.
#include <stdlib.h>
enum typeName {CHAR, INT};

typedef struct {
enum typeName myTypeName;
union {
char myChar;
int mylnt;
} myVar;
} myType;

void main() {
myType* myTypePtr;
myTypePtr = (myType*)malloc(sizeof(int) + sizeof(int));
if(myTypePtr != NULL) {
myTypePtr->myTypeName = INT;

}

Structure is allocated memory partially

#include<stdlib.h>

typedef struct {
int length;
int breadth;

} rectangle;

typedef struct {
int length;
int breadth;
int height;
} cuboid;

void main() {

4-39

4 Check Reference

4-40

cuboid *cuboidPtr = malloc(sizeof(rectangle));
if(cuboidPtri=NULL) {
cuboidPtr->length = 10;
cuboidPtr->breadth = 10;

}

In this example, cuboidPtr obtains sufficient memory to accommodate two of its
fields. Because the ANSI C standards do not allow such partial memory allocations, the
Illegally dereferenced pointer check on dereference of cuboidPtr produce a red
error.

Correction — Allocate full memory

To observe ANSI C standards, cuboidPtr must be allocated full memory.

#include<stdlib.h>

typedef struct {
int length;
int breadth;

} rectangle;

typedef struct {
int length;
int breadth;
int height;
} cuboid;

void main() {
cuboid *cuboidPtr = malloc(sizeof(cuboid));
if(cuboidPtri=NULL) {
cuboidPtr->length = 10;
cuboidPtr->breadth = 10;

}

Correction — Use Polyspace analysis option

You can allow partial memory allocation for structures, yet not have a red Illegally
dereferenced pointer error. To allow partial memory allocation, on the Configuration
pane, under Check Behavior, select Allow incomplete or partial allocation of
structures.

#include<stdlib_h>

lllegally dereferenced pointer

typedef struct {
int length;
int breadth;
} rectangle;

typedef struct {
int length;
int breadth;
int height;
} cuboid;

void main() {
cuboid *cuboidPtr = malloc(sizeof(rectangle));
if(cuboidPtri=NULL) {
cuboidPtr->length = 10;
cuboidPtr->breadth = 10;

}

Pointer to one field of structure points to another field

#include<stdlib.h>

typedef struct {
int length;
int breadth;

} square;

void main(Q) {
square mySquare;
char* squarePtr = &mySquare.length;
//Assign zero to mySquare.length byte by byte
for(int bytelndex=1; bytelndex<=4; bytelndex++) {
*squarePtr=0;
squarePtr++;
3
//Assign zero to first byte of mySquare.breadth
*squarePtr=0;
}

In this example, although squarePtr is a char pointer, it is assigned the address of the
integer mySquare . length. Because:

+ char occupies 1 byte,

4-41

4 Check Reference

* intoccupies 4 bytes in a 32-bit architecture,

squarePtr can access the four bytes of mySquare. length through pointer arithmetic.
But when it accesses the first byte of another field mySquare.breadth, the Illegally
dereferenced pointer check produces a red error.

Correction — Assign address of structure instead of field

One possible correction is to assign squarePtr the address of the full structure
mySquare instead of mySquare. length. squarePtr can then access all the bytes of
mySquare through pointer arithmetic.

#include<stdlib.h>

typedef struct {
int length;
int breadth;

} square;

void main(Q) {
square mySquare;
char* squarePtr = &mySquare;
//Assign zero to mySquare.length byte by byte
for(int bytelndex=1; bytelndex<=4; bytelndex++) {
*squarePtr=0;
squarePtr++;

//Assign zero to first byte of mySquare.breadth
*squarePtr=0;

}
Correction — Use Polyspace analysis option

You can use a pointer to navigate across the fields of a structure and not produce a red
Illegally dereferenced pointer error. To allow such navigation, on the Configuration
pane, under Check Behavior, select Enable pointer arithmetic across fields.

#include<stdlib_h>

typedef struct {
int length;
int breadth;

} square;

4-42

lllegally dereferenced pointer

void main() {
square mySquare;
char* squarePtr = &mySquare.length;
//Assign zero to mySquare.length byte by byte
for(int bytelndex=1; bytelndex<=4; bytelndex++) {
*squarePtr=0;
squarePtr++;

}

//Assign zero to first byte of mySquare.breadth
*squarePtr=0;

}

Check Information

Category: Static memory
Language: C | C++
Acronym: IDP

See Also

“Allow incomplete or partial allocation of structures (C)” | “Enable pointer arithmetic
across fields (C)”

4-43

4 Check Reference

4-44

Initialized return value

C function does not return value when expected

Description

This check determines whether a function with a return type other than void returns a
value. This check appears on every function call.

Examples

Function does not return value for given input

#include <stdio.h>
int input(void);
int inputRep(void);

int reply(int msg) {
int rep = inputRep();
if (msg > 0) return rep;

}

void main(void) {
int ch = input(), ans;
if (ch<=0)
ans = reply(0);
else
ans = reply(ch);
printf("The answer is %d.",ans);

}

In this example, for the function call reply(0), there is no return value. Therefore the
Initialized return value check returns a red error. The second call reply(ch) always
returns a value. Therefore, the check on this call is green.

Correction — Return value for all inputs

One possible correction is to return a value for all inputs to reply().

#include <stdio.h>

Initialized return value

int input(Q);
int inputRep();

int reply(int msg) {
int rep = inputRep();
if (msg > 0) return rep;
return O;

}

void main(void) {
int ch = input(), ans;
if (ch<=0)
ans = reply(0);
else
ans = reply(ch);
printf("The answer is %d.",ans);

}

Function does not return value for some inputs

#include <stdio.h>
int inputQ);
int inputRep(int);

int reply(int msg) {
int rep = inputRep(msg);
it (msg > 0) return rep;

}

void main(void) {
int ch = input(), ans;
if (ch<10)
ans = reply(ch);
else
ans = reply(10);
printf(""The answer is %d.",ans);

}

In this example, in the first branch of the i f statement, the value of ch can be divided
into two ranges:

+ ch < = 0: For the function call reply(ch), there is no return value.
* ch > 0Oandch < 10: For the function call reply(ch), there is a return value.

4-45

4 Check Reference

Therefore the Initialized return value check returns an orange error on reply(ch).
Correction — Return value for all inputs

One possible correction is to return a value for all inputs to reply ().

#include <stdio.h>
int inputQ);
int inputRep(int);

int reply(int msg) {
int rep = inputRep(msg);
if (nsg > 0) return rep;
return O;

}

void main(void) {
int ch = input(), ans;
if (ch<10)
ans = reply(ch);
else
ans = reply(10);
printf(""The answer is %d.",ans);

Check Information

Category: Data flow
Language: C
Acronym: IRV

See Also

“Function returns a value”

More About
. “Review Orange Check”

4-46

Inspection points

Inspection points

Variable range information appears

Description

This user-specified check provides range information on specified variables. If you want
to know the range of the variables varl, var2, ... ata certain point in the code,
place the line #pragma varl var2 ... atthat point. After verification, to see the

variable range, place your cursor on the variable name.

Note: The tooltip indicates the range that Polyspace considers, not the actual variable
range. Because of approximations, the variable range that Polyspace considers can
sometimes be a superset of the actual variable range. Use this check to help understand
the cause of other Polyspace checks.

Examples

View range of variable
int inputQ);

void main(Q) {
int num=input();
int i1;
if(hum>0 && num<10) {
for(i=0; i<20; i++)
num+=i;
#pragma Inspection_Point num

}

#pragma Inspection_Point num

}

In this example, if you place your cursor on the variable num in the #pragma statements,
you can view its range. In the first case, the tooltip shows the range [191 .. 199]. In

the second case, the tooltip shows the range [—231 .. 0] or [10 .. 2% - 1]. The

4-47

4 Check Reference

second range shows that Polyspace considers the return value of input() to be in the
full range of type Int.

Check Information

Category: Other
Language: C
Acronym: IPT

4-48

Invalid use of standard library routine

Invalid use of standard library routine

Standard library function is called with invalid arguments

Description

This check on a standard library function call determines whether the function is called
with valid arguments.

Examples

Invalid use of standard library float routine

#include<assert._h>
#include<math.h>

#define HALF_P1 1.5707963267948966
#define LARGE_EXP 710

enum operation {

ASIN,

ACOS,

TAN,

SQRT,

LOG,

EXP,

ACOSH,

ATANH };

enum operation getOperation();
double getval();

void main() {
enum operation myOperation = getOperation();
double myVal=getval(), res;
switch(myOperation) {
case ASIN: assert(myvVal <- 1.0 || myval > 1.0);
res = asin(myval);
break;
case ACOS: assert(myvVal < -1.0 || myval > 1.0);

4-49

4 Check Reference

4-50

case

case

case

case

case

case

}
}

TAN:

SQRT:

LOG:

EXP:

ACOSH:

ATANH:

res = acos(myVval);

break;

assert(myVal == HALF_PI);

res = tan(myVval);

break;

assert(myval < 0.0);

res = sqgrt(myval);

break;

assert(myVval <= 0.0);

res = log(myVval);

break;

assert(myVal > LARGE_EXP);
res = exp(myVval);

break;

assert(myval < 1.0);
res = acosh(myVal);
break;
assert(myval <= -1.0 || myval >= 1.0);
res = atanh(myVal);
break;

In this example, following each assert statement, Polyspace considers that myVal
contains only those values that make the assert condition true. For example, following
assert(myval < 1.0);, Polyspace considers that myVal contains values less than 1.0.

When myVal is used as argument in a standard library function, its values are invalid for
the function. Therefore, the Invalid use of standard library routine check produces a
red error.

Invalid use of standard library memory routine

#include <string.h>
#include <stdio.h>

char* Copy_First_Six_Letters(void) {
char strl[10],str2[5];
printf("Enter string:\n"");
scanf("'%s",strl);
memcpy(str2,strl,6);
return str2;

Invalid use of standard library routine

In this example, the size of string str2 is 5, but 6 characters of string strl are copied
into str2 using the memcpy function. Therefore, the Invalid use of standard library
routine check on the call to memcpy produces a red error.

Correction — Call function with valid arguments

One possible correction is to adjust the size of str2 so that it accommodates the
characters copied with the memcpy function.

#include <string.h>
#include <stdio.h>

char* Copy_First_Six_Letters(void) {
char strl[10],str2[6];
printf("Enter string:\n"");
scanf(""%s",strl);
memcpy(str2,strl,6);
return str2;

}

Invalid use of standard library string routine
#include <stdio.h>

char* Copy_String(void)
{

char *res;

char gbuffer[5],text[20]=""ABCDEFGHIJKL";
res=strcpy(gbuffer,text);

return(res);

}

In this example, the string text is larger in size than gbuffer. Therefore, when you
copy text into gbuffer. the Invalid use of standard library routine check on the
call to strcpy produces a red error.

Correction — Call function with valid arguments

One possible correction is to declare the destination string gbuffer with equal or larger
size than the source string text.

#include <stdio.h>

4-51

4 Check Reference

char* Copy_String(void)
{

char *res;

char gbuffer[20],text[20]="ABCDEFGHIJKL";
res=strcpy(gbuffer,text);

return(res);

}

Check Information

Category: Other
Language: C | C++
Acronym: STD_LIB

More About
“Review Orange Check”

4-52

Known non-terminating call

Known non-terminating call

Called function specified with ~-known-NTC does not return to calling context

Description
This check appears on a function call if:

* The function does not return to its calling context.

* You have specified the function name as an argument of the option ~-known-NTC. Use
this option to specify functions that contain a known infinite loop or another error.

Examples

Known non-terminating call error
enum boolean {TRUE, FALSE};
void task(Q);

void executeTask (enum boolean res) {
do {
task(Q);
} while(res==TRUE);
}

int inputChQ;

void main(Q) {
int ch = inputCh(Q);
if(ch==1)
executeTask(TRUE) ;
else
executeTask(FALSE);

}

In this example, in the first I f statement branch, executeTask does not return to the
calling context because of an infinite loop in the function body. If you:

4-53

4 Check Reference

* Run verification on the command-line with option ~-known-NTC "executeTask"

+ Specify ~known-NTC "‘executeTask" for Advanced Settings > Other on the
Configuration pane

a red Known non-terminating call appears on the call to executeTask.

Check Information

Category: Control flow
Language: C
Acronym: K_NTC

See Also

“Non-terminating call”

4-54

Non-initialized local variable

Non-initialized local variable

Local variable is not initialized before being read

Description

This check occurs for every local variable read. It determines whether the variable being
read is initialized.

Examples

Non-initialized variable used on right side of assignment operator
#include <stdio.h>

void main(void) {
int sum;
for(int i=1;i <= 10 ; i++)

sum+=i;
printf(""The sum of the first 10 natural numbers is %d.", sum);

}

The statement sum+=i ; is the shorthand for sum=sum+i ;. Because sum is used on the
right side of an expression before being initialized, the Non-initialized local variable
check returns a red error.

Correction — Initialize variable before using on right side of assignment
One possible correction is to initialize sum before the For loop.
#include <stdio.h>

void main(void) {
int sum=0;
for(int i=1;i <= 10 ; i++)

sum+=i;
printf(""The sum of the first 10 natural numbers is %d.", sum);

}

4-55

4 Check Reference

Non-initialized variable used with relational operator
#include <stdio.h>
int getTerm(Q);

void main(void) {
int count,sum=0,term;

while(count <= 10 && sum <1000) {
count++;
term = getTerm();
if(term > 0 && term <= 1000) sum += term;

}

printf("The sum of 10 terms is %d.", sum);
}

In this example, the variable count is not initialized before the comparison count <=
10. Therefore, the Non-initialized local variable check returns a red error.

Correction — Initialize variable before using with relational operator

One possible correction is to initialize count before the comparison count <= 10.
#include <stdio.h>

int getTermQ;

void main(void) {
int count=1,sum=0,term;

while(count <= 10 && sum <1000) {
count++;
term = getTerm();
if(term > 0 && term <= 1000) sum += term;

}

printf("The sum of 10 terms is %d.", sum);
}

Non-initialized variable passed to function

#include <stdio.h>

4-56

Non-initialized local variable

int getShift(Q);
int shift(int var) {
int shiftval = getShift();
if(shiftval > 0 && shiftval < 1000)
return(var+shiftval);
return 1000;

}

void main(void) {
int initval;
printfF(""The result of a shift is %d",shift(initval));
}

In this example, initVal is not initialized when it is passed to shift(). Therefore,
the Non-initialized local variable check returns a red error. Because of the red error,
Polyspace does not verify the operations in shift().

Correction — Initialize variable before passing to function

One possible correction is to initialize initVal before passing to shift(). initval can

be initialized through an input function. To avoid an overflow, the value returned from
the input function must be within bounds.

#include <stdio.h>

int getShift();
int getlnit();
int shift(int var) {
int shiftval = getShift();
if(shiftval > 0 && shiftval < 1000)
return(var+shiftval);
return 1000;

}

void main(void) {
int initval=getlnit();
if(initval >0 && initval < 1000)

printf(""The result of a shift is %d",shift(initval));
else

printf(*'Value must be between 0 and 1000.');

4-57

4 Check Reference

4-58

Non-initialized array element

#include <stdio.h>
#define arrSize 19

void main(void)

{

int arr[arrSize], indexFront, indexBack;
for(indexFront = 0,indexBack = arrSize - 1; indexFront < arrSize/2;
indexFront++, indexBack--) {

arr[indexFront] = indexFront;

arr[indexBack] = arrSize - indexBack - 1;

}

printf("The array elements are: \n");
for(indexFront = 0; indexFront< arrSize; indexFront ++)
printf("Element[%d]: %d", indexFront, arr[indexFront]);

}
In this example, in the first for loop:

+ indexFront runs from 0O to 8.
+ indexBack runs from 18 to 10.

Therefore, arr[9] is not initialized. In the second for loop, when arr[9] is passed to
printf, the Non-initialized local variable check returns an error. The error is orange
because the check returns an error only in one of the loop runs.

Due to the orange error in one of the loop runs, a red Non-terminating loop error
appears on the second for loop.

Correction — Initialize variable before passing to function

One possible correction is to keep the first for loop intact and initialize arr[9] outside
the For loop.

#include <stdio.h>
#define arrSize 19

void main(void)
{
int arr[arrSize], indexFront, indexBack;
for(indexFront = 0,indexBack = arrSize - 1; indexFront < arrSize/2;
indexFront++, indexBack--) {
arr[indexFront] = indexFront;

Non-initialized local variable

arr[indexBack] = arrSize - indexBack - 1;

}

arr[indexFront] = indexFront;

printf("The array elements are: \n');

for(indexFront = 0; indexFront< arrSize; indexFront ++)
printfF("Element[%d]: %d', indexFront, arr[indexFront]);

}

Non-initialized structure

typedef struct S {
int integerField;
char characterField;

}S:

void operateOnStructure(S);
void operateOnStructureField(int);

void main(Q) {
S myStruct;
operateOnStructure(myStruct);
operateOnStructureField(myStruct. integerField);

}

In this example, the structure myStruct is not initialized. Therefore, when the structure
myStruct is passed to the function operateOnStructure, a Non-initialized local
variable check on the structure appears red.

Correction— Initialize structure

One possible correction is to initialize the structure myStruct before passing it to a
function.

typedef struct S {
int integerField;
char characterField;

}S:

void operateOnStructure(S);
void operateOnStructureField(int);

void main() {

S myStruct = {0," "};
operateOnStructure(myStruct);

4-59

4 Check Reference

operateOnStructureField(myStruct. integerField);
}

Partially initialized structure — All used fields initialized

typedef struct S {
int integerField;
char characterField;
double doubleField;

}S:

int getintegerField(void);
char getCharacterField(void);

void printintegerField(int);
void printCharacterField(char);

void printFields(S s) {
printintegerField(s.integerField);
printCharacterField(s.characterField);

}

void main() {
S myStruct;

myStruct.integerField = getlntegerField();
myStruct.characterField = getCharacterField();
printFields(myStruct);

}

In this example, the Non-initialized local variable check on myStruct is green
because:

+ The fields integerField and characterField that are used are both initialized.

+ Although the field doubleField is not initialized, there is no read or write operation
on the field doubleField in the code.

To determine which fields are checked for initialization:

1 Select the check on the Results Summary pane or Source pane.

2 View the message on the Check Details pane.

4-60

Non-initialized local variable

Partially initialized structure — Some used fields initialized

typedef struct S {
int integerField;
char characterField;
double doubleField;

}S:

int getlintegerField(void);
char getCharacterField(void);

void printintegerField(int);
void printCharacterField(char);
void printDoubleField(double);

void printFields(S s) {
printintegerField(s.integerField);
printCharacterField(s.characterField);
printDoubleField(s.-doubleField);

}

void main() {
S myStruct;

myStruct.integerField = getlntegerField();
myStruct.characterField = getCharacterField();
printFields(myStruct);

}

In this example, the Non-initialized local variable check on myStruct is orange
because:

+ The fields integerField and characterField that are used are both initialized.

+ The field doubleField is not initialized and there is a read operation on
doubleField in the code.

To determine which fields are checked for initialization:

1 Select the check on the Results Summary pane or Source pane.

2 View the message on the Check Details pane.

4-61

4 Check Reference

Check Information

Category: Data flow
Language: C | C++
Acronym: NIVL

See Also

“Non-initialized pointer” | “Non-initialized variable”

More About
“Review Orange Check”

4-62

Non-initialized pointer

Non-initialized pointer

Pointer is not initialized before being read

Description

This check occurs for every pointer read. It determines whether the pointer being read is
initialized.

Examples

Non-initialized pointer passed to function

int assignValueToAddress(int *ptr) {
*ptr = 0;
}

void main(Q) {
int* newPtr;
assignValueToAddress(newPtr);

}

In this example, newPtr is not initialized before it is passed to
assignValueToAddress().

Correction — Initialize pointer before passing to function

One possible correction is to assign newPtr an address before passing to
assignValueToAddress().

int assignValueToAddress(int *ptr) {
*ptr = 0;
}

void main() {

int val;

int* newPtr = &val;
assignValueToAddress(newPtr);

4-63

4 Check Reference

4-64

}

Non-initialized pointer to structure

#include <stdlib_h>
#define stackSize 25

typedef struct stackElement {
int value;
int *prev;

}stackElement;

int input(Q);

void main() {
stackElement *stackTop;

for (int count = 0; count < stackSize; count++) {
if(stackTop!=NULL) {
stackTop -> value = input();
stackTop -> prev = stackTop;

stackTop = (stackElement*)malloc(sizeof(stackElement));

}
}

In this example, in the first run of the for loop, stackTop is not initialized and does not
point to a valid address. Therefore, the Non-initialized pointer check on stackTop!
=NULL returns a red error.

Correction — Initialize pointer before dereference

One possible correction is to initialize stackTop through mal loc() before the check
stackTopI=NULL.

#include <stdlib_.h>
#define stackSize 25

typedef struct stackElement {
int value;
int *prev;

}stackElement;

int input(Q);

Non-initialized pointer

void main() {
stackElement *stackTop;

for (int count = 0; count < stackSize; count++) {
stackTop = (stackElement*)malloc(sizeof(stackElement));
if(stackTop!=NULL) {
stackTop -> value = input(Q);
stackTop -> prev = stackTop;

}
}
}

Non-initialized char* pointer used to store string

#include <stdio.h>

void main(Q) {
char *str;
scanf(""%s",str);

}

In this example, str does not point to a valid address. Therefore, when the scanf
function reads a string from the standard input to str, the Non-initialized pointer
check returns a red error.

Correction — Use char array instead of char* pointer

One possible correction is to declare str as a char array. This declaration assigns an
address to the char™® pointer associated with the array name str. You can then use the
pointer as input to scanf.

#include <stdio.h>

void main() {
char str[10];
scanf(""%s",str);

}

Non-initialized array of char* pointers used to store variable-size
strings

#include <stdio.h>

4-65

4 Check Reference

4-66

void assignDataBaseElement(char** str) {
scanf("'%s",*str);

}

void main() {
char *dataBase[20];

for(int count = 1; count < 20 ; count++) {
assignDataBaseElement(&dataBase[count]);
printf("'Database element %d : %s'",count,dataBase[count]);

}
}

In this example, dataBase is an array of char* pointers. In each run of

the For loop, an element of dataBase is passed via pointers to the function
assignDataBaseElement(). The element passed is not initialized and does not contain
a valid address. Therefore, when the element is used to store a string from standard
input, the Non-initialized pointer check returns a red error.

Correction — Initialize char* pointers through cal loc

One possible correction is to initialize each element of dataBase through the calloc()
function before passing it to assignDataBaseElement(). The initialization through
calloc() allows the char pointers in dataBase to point to strings of varying size.

#include <stdio.h>
#include <stdlib_h>

void assignDataBaseElement(char** str) {
scanf("'%s",*str);

}
int inputSize();

void main() {
char *dataBase[20];

for(int count = 1; count < 20 ; count++) {
dataBase[count] = (char*)calloc(inputSize(),sizeof(char));
assignDataBaseElement(&dataBase[count]);
printf('Database element %d : %s',count,dataBase[count]);

}
}

Non-initialized pointer

Check Information

Category: Data flow
Language: C | C++
Acronym: NIP

See Also

“Non-initialized local variable” | “Non-initialized variable”

More About
“Review Orange Check”

4-67

4 Check Reference

4-68

Non-initialized variable

Variable other than local variable is not initialized before being read

Description

For variables other than local variables, this check occurs on every variable read. It
determines whether the variable being read is initialized.

By default, Polyspace considers that global variables are initialized according to ANSI C
standards. For instance, the default initial value of an int variable is 0.

To prevent this default assumption during analysis, on the Configuration pane, select
Inputs & Stubbing. Select Ignore default initialization of global variables. This
option is not available for C++ code.

Examples

Non-initialized global variable

int globvar;
int getval(Q);

void main(Q) {
int val = getval();
if(val>=0 && val<= 100)
globVar += val;

}

In this example, globVar does not have an initial value when incremented. Therefore,
the Non-initialized variable check produces a red error.

Correction — Initialize global variable before use

One possible correction is to initialize the global variable globVar before use.

int globvar;
int getval(Q);

Non-initialized variable

void main() {
int val = getval();
if(val>=0 && val<= 100)
globvar += val;

}

Check Information

Category: Data flow
Language: C | C++
Acronym: NIV

See Also

“Ignore default initialization of global variables (C)” | “Non-initialized local variable” |
“Non-initialized pointer”

More About
“Review Orange Check”

4-69

4 Check Reference

4-70

Non-null this-pointer in method

this pointer is null during member function call

Description

This check on a this pointer dereference determines whether the pointer is NULL.

Examples

Pointer to object is NULL during member function call

#include <stdlib._h>
class Company {
public:
Company(int initialNumber):numberOfClients(initialNumber) {}
void addNewClient() {
numberOfClients++;

}
protected:

int numberOfClients;

}:

void main() {
Company* myCompany = NULL;
myCompany->addNewClient();

In this example, the pointer myCompany is initialized to NULL. Therefore when the
pointer is used to call the member function addNewCl ient, the Non-null this-pointer
in method produces a red error.

Correction — Initialize pointer with valid address

One possible correction is to initialize myCompany with a valid memory address using the
new operator.

#include <stdlib.h>
class Company {

Non-null this-pointer in method

public:
Company(int initialNumber):numberOfClients(initialNumber) {}
void addNewClient() {

numberOfClients++;

}
protected:

int numberOfClients;

}:

void main() {

Company* myCompany = new Company(0);
myCompany->addNewClient();

}

Check Information
Category: C++
Language: C++
Acronym: NNT

More About
. “Review Orange Check”

4-71

4 Check Reference

4-72

Non-terminating call

Called function does not return to calling context

Description

This check on a function call determines whether the called function returns to its calling
context. A function does not return to its calling context if it contains a run-time error.

Depending on the context, a non-terminating call appears in the user interface in two
different ways:

* A dashed red underline on the function call. The dashed red underline indicates that
you can find the line containing the error in the function body.
To find the source of error, place your cursor on the function call.

To navigate to the source of error, right-click the function call and select Go to
Cause.

* A red error on the function call. The red indicates that there is at least one other call
to the same function that does not produce a Non-terminating call error. You find
the error, which is orange, inside the function body.

Examples

Dashed red underline on function call

#include<stdio.h>
double ratio(int num, int den) {
return(num/den) ;

}
void main() {

int i,j;

1=2;

J=0;
printfF("%.2F" , ratio(i,j));
}

Non-terminating call

In this example, a red Division by zero error appears in the body of ratio. This
Division by zero error in the body of ratio causes a dashed red underline on the call to

ratio.

Red underline on function call

#include<stdio.h>

double ratio(int num, int den) {

return(num/den);

}
int inputChQ);

void n_1ain() {

int i,j,ch=inputCh(Q);
i=2;

if(ch==1) {
J=0;

printf("%.2f", ratio(i,j));

}
else {
i=2;

printf("%.2f", ratio(i,j));

}
}

In this example, there are two calls to ratio. In the first call, a Division by zero error
occurs in the body of ratio. In the second call, Polyspace does not find errors. Therefore,
combining the two calls, an orange Division by zero check appears in the body of
ratio. A red Non-terminating call check on the first call indicates the error.

Red underline on call through function pointer

typedef void (*f)(void);
// function pointer type

void fl(void) {
int x;
X++7

}

4-73

4 Check Reference

void f2(void) { }
void f3(void) { }

T fptr_array[3] = {fl1,f2,¥3};
unsigned char getlndex(void);

void main(void) {
unsigned char index = getlndex() % 3;;
// Index is between O and 2

fptr_array[index]();
fptr_array[index]();
}

In this example, because index can lie between 0 and 2, the first fptr_array[index]
() can call F1, ¥2 or F3. If index is zero, the statement calls ¥1. 1 contains a red Non-
initialized local variable error, therefore, a dashed red error appears on the function
call. Unlike other red errors, the verification continues.

After this statement, the software considers that index is either 1 or 2. An error does not
occur on the second Fptr_array[index] ().

Check Information

Category: Control flow
Language: C | C++
Acronym: NTC

See Also

“Known non-terminating call”

4-74

Non-terminating loop

Non-terminating loop

Loop does not terminate or contains an error

Description

This check on a loop determines whether the loop terminates or contains an error in one
its iterations. If the check fails, a red error appears on the loop command.

For a red Non-terminating loop check, on the Source pane, place your cursor on the
red loop command. A tooltip appears explaining the possible reason for the red check.

Examples

Loop does not terminate
#include<stdio.h>

void main(Q) {
int i=0;
while(i<10) {
printf('%d"”,i);
}

}

In this example, in the whi le loop, 1 does not increase. Therefore, the test 1<10 never
fails.

Correction — Ensure Loop Termination

One possible correction is to update i such that the test 1<10 fails after some loop
iterations and the loop terminates.

#include<stdio.h>
void main() {

int 1=0;
while(i<10) {

4-75

4 Check Reference

4-76

printf("%d",1);
i++;
e
¥

Loop contains an out of bounds array index error

void main() {
int arr[20];
for(int 1=0; i1<=20; i++) {
arr[i]=0;
}
}

In this example, the last run of the for loop contains an Out of bounds array index
error. Therefore, the Non-terminating loop check on the For loop is red. A tooltip
appears on the For loop stating the maximum number of iterations including the one
containing the run-time error.

Correction — Avoid loop iteration containing error

One possible correction is to reduce the number of loop iterations so that the Out of
bounds array index error does not occur.

void main() {
int arr[20];
for(int i=0; i<20; i++) {
arr[i]=0;
}
}

Loop contains an error in function call
int arr[4];

void assignValue(int index) {
arr[index] = O;

}

void main() {
for(int i=0;i<=4;i++)
assignValue(i);

}

Non-terminating loop

In this example, the call to function assignValue in the last For loop iteration contains
an error. Therefore, although an error does not show in the for loop body, a red Non-
terminating loop appears on the loop itself.

Correction — Avoid loop iteration containing error

One possible correction is to reduce the number of loop iterations so the error in the call
to assignValue does not occur.

int arr[4];

void assignValue(int index) {
arr[index] = O;

}

void main() {
for(int i=0;i<4;i++)
assignValue(i);

}

Loop contains an overflow error

#define MAX 1024
void main() {
int 1=0,val=1;
while(i<MAX) {
val*=2;
1++;
}
}

In this example, an Overflow error occurs in iteration number 31. Therefore, the Non-
terminating loop check on the while loop is red. A tooltip appears on the whi le loop
stating the maximum number of iterations including the one containing the run-time
error.

Correction — Reduce loop iterations

One possible correction is to reduce the number of loop iterations so that the overflow
does not occur.

#define MAX 30
void main() {

4-77

4 Check Reference

4-78

int 1=0,val=1;
while(i<MAX) {
val*=2;
1++;
3
¥

Check Information
Category: Control flow
Language: C | C++
Acronym: NTL

Object oriented programming

Obiject oriented programming

Dynamic type of this pointer is incorrect

Description

This check on dereference of a this pointer or pointer to method determines whether the
dereference is legal.

Examples

Pointer to method has incorrect type

#include <iostream>
class myClass {
public:

void method(Q) {}
}:

void main() {

myClass Obj;

int (myClass: :*methodPtr) (void) = (int (myClass::*) (void))
&myClass: :method;

int res = (Obj.*methodPtr)();

std::cout << "Result = " << res;

}

In this example, the pointer methodPtr has return type int but points to
myClass:method that has return type void. Therefore, when methodPtr is
dereferenced, the Object oriented programming check produces a red error.

Pointer to method contains NULL when dereferenced
#include <iostream>
class myClass {

public:
void method() {}

4-79

4 Check Reference

4-80

}:

void main() {

myClass Obj;

void (myClass: :*methodPtr) (void) = &myClass::method;
methodPtr = 0;

(Obj -*methodPtr)();

}

In this example, methodPtr has value NULL when it is dereferenced.

Pure virtual function is called in base class constructor

class Shape {
public:
Shape(Shape *myShape) {
myShape-> setShapeDimensions(0.0);
}

virtual void setShapeDimensions(double) = 0;

¥

class Square: public Shape {
double side;

public:

Square() :Shape(this) {

void setShapeDimensions(double);

¥

void Square::setShapeDimensions(double val) {
side=val;

}

void main(Q) {
Square sq;
sq.setShapeDimensions(1.0);

}

In this example, the derived class constructor Square: :Square calls the base class
constructor Shape: :Shape() with its this pointer. The base class constructor then
calls the pure virtual function Shape: :setShapeDimensions through the this
pointer. Since the call to a pure virtual function from a constructor is undefined, the
Object oriented programming check produces a red error.

Object oriented programming

Check Information
Category: C++
Language: C++
Acronym: OOP

4-81

4 Check Reference

4-82

Out of bounds array index

Array is accessed outside range

Description

This check on an array element access determines whether the element is outside the
array range.

Examples

Array index is equal to array size
#include <stdio.h>
void fibonacci(void)
{
int i;
int Fib[10];

for (i = 0; 1 < 10; i++)

{
if (i <2)
fib[i] = 1;
else
fib[i] = fib[i-1] + fib[i-2];
¥

printf("The 10-th Fibonacci number is %i -\n", fib[i]);
}

In this example, the array Fib is assigned a size of 10. An array index for fib has
allowed values of [0,1,2,...,9]. The variable 1 has a value 10 when it comes out of the for-
loop. Therefore, when the printf statement attempts to access Fib[10] through 1, the
Out of bounds array index check produces a red error.

The check also produces a red error if printf uses *(fib+1) instead of Fib[1i].

Out of bounds array index

Correction — Keep array index less than array size
One possible correction is to print Fib[i-1] instead of Fib[i] after the for-loop.
#include <stdio.h>
void fibonacci(void)
{
int i;
int fib[10];

for (i = 0; i < 10; i++)

{
if (i <2)
fib[i] = 1;
else
fib[i] = fib[i-1] + Ffib[i-2];
3

printf(""The 10-th Fibonacci number is %i .\n", fib[i-1]);
}

Check Information

Category: Static memory
Language: C | C++
Acronym: OBAI

See Also

“Illegally dereferenced pointer”

More About
“Review Orange Check”

4-83

4 Check Reference

4-84

Overflow

Arithmetic operation causes overflow

Description

This check on an arithmetic operation determines whether the result overflows. An
overflow occurs when the value of a variable falls outside the range allowed by its type.

Examples

Integer overflow

void main(Q) {

int i=1;

i =1 <<30; //i = 2730
i = 2*%i-2;

b

In this example, the operation 2*i results in a value 2%, Since the maximum value
that the type int can hold on a 32-bit target is 231—1, the Overflow check on the

multiplication produces a red error.
Overflow due to left shift on signed integers
void main(void)

{

unsigned int i;

i = 1090654225 << 1;
}

In this example, an Overflow error occurs because of integer promotion.

Float overflow

#include <float.h>

Overflow

void main() {
float val =
val = val *

}

In this example, FLT_MAX is the maximum value that can be represented by Float on a
32-bit target. Therefore, the operation val * 2 results in an Overflow error.

FLT_MAX;
2+ 1

.0;

Negative overflow

#define FLT_MAX 3.40282347e+38F
#define FLT_MIN 1.17549435e-38

int inputQ);

void main() {
int choice=input();

if(choice==0)
float_negative_overflow();

else
int_negative_overflow();

}

void float_negative_overflow() {
float zer_float = FLT_MIN;
float min_float = -FLT_MAX;

zer_float
min_float

}

zer_float * zer_float;
-min_float * min_float;

void int_negative_overflow() {
int min_int = -2147483648;
}

In this example:
+ In float_negative_overflow, there are two cases of underflow:

* In the first case, zer_float contains the closest possible number to zero that
can be represented by the type Float. Because the operation zer_float *
zer_Tloat produces a number that is even closer to zero, it cannot be represented

4-85

4 Check Reference

4-86

by the type Float. However, the Overflow check does not detect this kind of
underflow.

In the second case, min_float contains the most negative number that can

be represented by the type Float. Because the operation -min_float *
min_float produces a number that is further negative, it cannot be represented
by the type Float. Therefore, the Overflow check produces a red error.

+ In int_negative overflow, the variable min_int is assigned the value
-2147483648. This assignment occurs in three steps:

1 The value 2147483648 is assigned to an unsigned 32-bit integer.
2 The unsigned integer is cast to a signed integer.

3 The unary minus is performed on the signed integer.

Since the maximum value that a signed integer can have is 2147483647, a overflow
occurs in the second step. Therefore, even though the minimum value a signed
integer can have is -2147483648, a red Overflow error appears on the operation int
min_int = -2147483648;

Overflows on constants

void main(Q) {
char x = OxXFFFF;
X=X+1;

}

In this example, the constant OXFFFF is greater than the maximum value that can be
represented by the type char. Therefore the Overflow check produces a red error.

The following table lists three kinds of constants with the corresponding data types. For
each kind, the data type assigned to a constant is the first data type in the corresponding
column that can hold the constant.

Decimal int, long, unsigned long

Hexadecimal int, unsigned int, long, unsigned
long

Float float, double

For example, (assuming a 16-bit target) the data types for the following values are listed
in this table.

Overflow

5.8 double

6 int

65536 long

0x6 int

0xFFFF unsigned int
5.8F float

65536U unsigned int

To avoid red Overflow errors on constants, on the Configuration pane, use the
analysis option Check Behavior > Ignore overflowing computations on constants.
Overflows on unsigned bit fields
#include <stdio.h>
struct
{
unsigned int dayOfWeek : 2;
} Week;

void main(Q)

Week.dayOfWeek = 2;
Week.dayOfWeek = 3;
Week.dayOfWeek = 4;

}

In this example, dayOfWeek occupies 2 bits. Because it is an unsigned integer, it can
take values in [0,3]. When you assign 4 to dayOfWeek, the Overflow check is red.

To detect overflows on signed and unsigned integers, on the Configuration pane, under
Check Behavior, select signed-and-unsigned for Detect overflows.

Overflows on signed and enum bit fields

enum tBit {

ZERO = 0xO00,
ONE = 0Ox01 ,
TWO = 0x02

4-87

4 Check Reference

4-88

}:

struct twoBit

{
enum tBit myBit:2;
} myBitField;

void main(Q)

{

myBitField.myBit = ZERO;
myBitField.myBit = ONE;
myBitField.myBit = TWO;

}

In this example, because myBit is an enum variable, it is implemented through a signed
integer according to the ANSI C90 standard. myBit occupies 2 bits. Because it is a signed
integer, it can take values in [-2,1]. When you assign 2 to myBit, the Overflow check
is red.

To detect overflows on signed integers alone, on the Configuration pane, under Check
Behavior, select signed for Detect overflows.

Check Information

Category: Numerical
Language: C | C++
Acronym: OVFL

See Also

“Detect overflows (C/C++)” | “Ignore overflowing computations on constants (C/C++)” |
“Overflow computation mode (C/C++)”

More About
. “Review Orange Check”

Shift operations

Shift operations

Shift operations are invalid

Description
This check on shift operations on a variable var determines:

* Whether the shift amount is larger than the range allowed by the type of var.
+ If the shift is a left shift, whether var is negative.

Examples

Shift amount outside bounds

#include <stdlib_.h>
#define shiftAmount 32
enum shiftType {
SIGNED_LEFT,
SIGNED_RIGHT,
UNSIGNED_LEFT,
UNSIGNED_RIGHT

};
enum shiftType getShiftType();

void main() {

enum shiftType myShiftType = getShiftType();

int signedinteger = 1;

unsigned int unsignedinteger = 1;

switch(myShiftType) {

case SIGNED_LEFT: signedinteger = signedlnteger << shiftAmount;
break;

case SIGNED_RIGHT: signedInteger = signedinteger >> shiftAmount;
break;

case UNSIGNED_LEFT: unsignedInteger = unsignedlnteger << shiftAmount;

break;

case UNSIGNED_RIGHT: unsignedlnteger = unsignedlnteger >> shiftAmount;

4-89

4 Check Reference

4-90

break;

}
}

In this example, the shift amount shiftAmount is outside the allowed range for both
signed and unsigned int. Therefore the Shift operations check produces a red error.

Correction — Keep shift amount within bounds

One possible correction is to keep the shift amount in the range 0..31 for unsigned
integers and 0...30 for signed integers. This correction works if the size of int is 32 on
the target processor.

#include <stdlib.h>
#define shiftAmountSigned 30
#define shiftAmount 31
enum shiftType {
SIGNED_LEFT,
SIGNED_RIGHT,
UNSIGNED_LEFT,
UNSIGNED_RIGHT

};
enum shiftType getShiftType();

void main() {
enum shiftType myShiftType = getShiftType();
int signedinteger = 1;
unsigned int unsignedinteger = 1;
switch(myShiftType) {
case SIGNED_LEFT: signedlnteger =
signedinteger << shiftAmountSigned;
break;
case SIGNED_RIGHT: signedinteger =
signedinteger >> shiftAmountSigned;
break;
case UNSIGNED_LEFT: unsignedinteger =
unsignedInteger << shiftAmount;
break;
case UNSIGNED_RIGHT: unsignedlnteger =
unsignedInteger >> shiftAmount;
break;
}
}

Shift operations

Left operand of left shift is negative

void main(void) {
int x = -200;
int y;
y = X << 1;

}

In this example, the left operand of the left shift operation is negative.
Correction — Use Polyspace analysis option

You can use left shifts on negative numbers and not produce a red Shift operations
error. To allow such left shifts, on the Configuration pane, under Check Behavior,
select Allow negative operand for left shifts.

void main(void) {
int x = -200;
int y;
y = X << 1;

Check Information

Category: Numerical
Language: C | C++
Acronym: SHF

See Also

“Allow negative operand for left shifts (C/C++)”

More About
“Review Orange Check”

4-91

4 Check Reference

4-92

Unreachable code

Code cannot be reached during execution

Description

This check determines whether a section of code can be reached during execution.
Examples of unreachable code include the following:

+ If a test condition always evaluates to false, the corresponding code branch cannot be

reached. On the Source pane, the opening brace of the branch is gray.

+ If a test condition always evaluates to true, the condition is redundant. On the
Source pane, the condition keyword such as i appears gray.

* The code follows a break or return statement.

If an opening brace of a code block appears gray on the Source pane, to highlight the
entire block, double-click the brace.

The check operates on code inside a function. The checks Function not called and
Function not reachable determine if the function itself is not called or called from
unreachable code.

Examples

Test in i T Statement Always False

#define True 1
#define False O

typedef enum {
Intermediate, End, Wait, Init
} enumState;

enumState input();
enumState inputRef();
void operation(enumState, int);

Unreachable code

int checklnit (enumState stateval) {

if (stateval == Init) return True;
return False;

3

int checkWait (enumState stateval) {
if (stateval == Wait) return True;
return False;

3

void main() {
enumState myState = input(),refState = inputRef() ;
if(checklnit(myState)){
if(checkWait(myState)) {
operation(myState,checklnit(refState));
} else {
operation(myState,checkWait(refState));
}
}
}

In this example, the main enters the branch of 1 f(checklnit(myState)) only if
myState = Init. Therefore, inside that branch, Polyspace considers that myState
has value Init. checkWait(myState) always returns False and the first branch of
if(checkWait(myState)) is unreachable.

Correction — Remove Redundant Test
One possible correction is to remove the redundant test i f(checkWait(myState)).

#define True 1
#define False O

typedef enum {
Intermediate, End, Wait, Init
} enumState;

enumState input();
enumState inputRef();
void operation(enumState, int);

int checklnit (enumState stateval) {

if (stateval == Init) return True;
return False;

4-93

4 Check Reference

}

int checkWait (enumState stateval) {
if (stateval == Wait) return True;
return False;

}

void main() {
enumState myState = input(),refState = inputRef() ;
if(checklnit(myState))
operation(myState,checkWait(refState));

}

Test in i T Statement Always True

#include <stdlib_h>
#include <time.h>

int roll({
return(rand()%6+1) ;

}

void operation(int);

void main(Q) {
srand(time(NULL));
int die = roll();
if(die >= 1 && die <= 6)
/*Unreachable code*/
operation(die);

}

In this example, rol 1 () returns a value between 1 and 6. Therefore the 1T test in main
always evaluates to true and is redundant. If there is a corresponding else branch,

the gray error appears on the else statement. Without an else branch, the gray error
appears on the 1 f keyword to indicate the redundant condition.

Correction — Remove Redundant Test

One possible correction is to remove the condition i f(die >= 1 && die <=6).

#include <stdlib_.h>
#include <time.h>

int roll({

4-94

Unreachable code

return(rand(Q%6+1) ;
}

void operation(int);

void main(Q) {
srand(time(NULL));
int die = roll();
operation(die);

}

Test in i F Statement Unreachable

#include <stdlib_h>
#include <time.h>
#define True 1
#define False O

int roll11({
return(rand()%6+1) ;

int roll12(Q);
void operation(int,int);

void main(Q) {
srand(time(NULL));
int diel = roll1(),die2=roll12();

if((diel>=1 && diel<=6) || (die2>=1 && die2 <=6))

/*Unreachable code*/
operation(diel,die2);
}

In this example, rol11() returns a value between 1 and 6. Therefore, the first part of
the 1F test, IT((diel>=1) && (diel<=6)) is always true. Because the two parts of
the i f test are combined with | |, the i f test is always true irrespective of the second

part. Therefore, the second part of the §F test is unreachable.

Correction — Combine Tests with &&

One possible correction is to combine the two parts of the 1 F test with && instead of | |.

#include <stdlib_.h>
#include <time.h>
#define True 1
#define False O

4-95

4 Check Reference

int roll1({
return(rand()%6+1) ;

}
int roll12(Q);
void operation(int,int);

void main() {
srand(time(NULL));
int diel = roll1(),die2=roll12();
if((diel>=1 && diel<=6) && (die2>=1 && die2 <=6))
operation(diel,die2);

Check Information

Category: Data flow
Language: C | C++
Acronym: UNR

See Also

“Function not called” | “Function not reachable”

More About
“Gray Checks”

4-96

User assertion

User assertion

assert statement fails

Description
This check determines whether the argument to an assert macro is true.

The argument to the assert macro must be true when the macro executes. Otherwise
the program aborts and prints an error message. Polyspace models this behavior by
treating a failed assert statement as a run-time error. This check allows you to detect
failed assert statements before program execution.

Examples

Red assert on array index

#include<stdio.h>
#define size 20

int getArrayElement();

void initialize(int* array) {
for(int i=0;i<size;i++)
array[i] = getArrayElement();

void printElement(int* array,int index) {
assert(index < size);

printf(""%d", array[index]);

}

int getindex() {
int 1 = size;
return i;

}
void main() {

int array[size];
int index;

4-97

4 Check Reference

4-98

initialize(array);
index = getlndex();
printElement(array, index);

}

In this example, the assert statement in printElement causes program abort if index
>= size. The assert statement makes sure that the array index is not outside array
bounds. If the code does not contain exceptional situations, the assert statement must
be green. In this example, getlndex returns an index equal to size. Therefore the
assert statement appears red.

Correction — Correct cause of assert failure

When an assert statement is red, investigate the cause of the exceptional situation. In
this example, one possible correction is to force getlndex to return an index equal to
size-1.

#include<stdio.h>
#define size 20

int getArrayElement();

void initialize(int* array) {
for(int i=0;i<size;i++)
array[i] = getArrayElement();

void printElement(int* array,int index) {
assert(index < size);

printfF("%d", array[index]);

}

int getindex() {
int 1 = size;
return (i-1);

}

void main() {
int array[size];
int index;

initialize(array);

User assertion

index = getlndex();
printElement(array, index);

}

Orange assert on mal loc return value

#include <stdlib.h>

void initialize(int*);
int getNumberOfElements();

void main(Q) {
int numberOfElements, *myArray;

numberOfElements = getNumberOfElements();

myArray = (int*) malloc(numberOfElements);
assert(myArray!=NULL);

initialize(myArray);

}

In this example, mal loc can return NULL to myArray. Therefore, myArray can have two
possible values:

* myArray == NULL: The assert condition is false.
* myArray != NULL: The assert condition is true.

Combining these two cases, the User assertion check on the assert statement is
orange. After the orange assert, Polyspace considers that myArray is not equal to NULL.

Correction — Check return value for NULL

One possible correction is to write a customized function myMal loc where you always
check the return value of mal loc for NULL.

#include <stdio.h>
#include <stdlib_.h>

void initialize(int*);
int getNumberOfElements();

void myMalloc(int **ptr, int num) {

4-99

4 Check Reference

4-100

ptr = (int) malloc(num);
if(*ptr==NULL) {
printf(""Memory allocation error™);
exit(l);
}
}

void main() {
int numberOfElements, *myArray=NULL;

numberOfElements = getNumberOfElements();

myMalloc(&myArray ,numberOfElements) ;
assert(myArray!=NULL);

initialize(myArray);

}

Imposing constraint through orange assert

#include<stdio.h>
#include<math.h>

double getNumber();
void squareRootOfDifference(double firstNumber, double secondNumber) {
assert(firstNumber >= secondNumber);

if(FirstNumber > 0 && secondNumber > 0)

printf(*'Square root = %.2f",sqrt(firstNumber - secondNumber));

}

void main() {
double firstNumber = getNumber(), secondNumber = getNumber();
squareRootOfDi fFference(firstNumber,secondNumber) ;

}

In this example, the assert statement in squareRootOfDifference() causes
program abort if FirstNumber is less than secondNumber. Because Polyspace does
not have enough information about FirstNumber and secondNumber, the assertis
orange.

Following the assert, all execution paths that cause assertion failure terminate.
Therefore, following the assert, Polyspace considers that FirstNumber >=
secondNumber. The Invalid use of standard library routine check on sqrt is green.

User assertion

Use assert statements to help Polyspace determine:

+ Relationships between variables

+ Constraints on variable ranges

Check Information

Category: Other
Language: C | C++
Acronym: ASRT

More About

. “Review Orange Check”

4-101

4-102

Approximations Used During
Verification

* “Why Polyspace Verification Uses Approximations” on page 5-2
+ “Approximations Made by Polyspace Verification” on page 5-4

+ “Limitations of Polyspace Verification” on page 5-9

5 Approximations Used During Verification

Why Polyspace Verification Uses Approximations

In this section...

“What is Static Verification” on page 5-2

“Exhaustiveness” on page 5-3

What is Static Verification

Polyspace software uses static verification to prove the absence of run-time errors. Static
verification derives the dynamic properties of a program without actually executing it.
This differs significantly from other techniques, such as run-time debugging, in that the
verification it provides is not based on a given test case or set of test cases. The dynamic
properties obtained through the Polyspace verification are true for executions of the
software.

Polyspace verification works by approximating the software under verification, using
representative approximations of software operations and data.

For example, consider the following code:

for (i=0 ; i<1000 ; ++i)
{ tab[i] = foo(i);
}

To check that the variable i never overflows the range of tab, a traditional approach
would be to enumerate each possible value of i. One thousand checks would be required.

Using the static verification approach, the variable 1 is modelled by its variation domain.
For instance the model of i is that it belongs to the [0..999] static interval. (Depending
on the complexity of the data, convex polyhedrons, integer lattices and more elaborated
models are also used for this purpose).

An approximation, by definition, leads to information loss. For instance, the information
that 1 is incremented by one every cycle in the loop is lost. However, the important fact
1s that this information is not required to ensure that range errors will not occur; it is
only necessary to prove that the variation domain of 1 is smaller than the range of tab.
Only one check is required to establish that — and hence the gain in efficiency compared
to traditional approaches.

Why Polyspace Verification Uses Approximations

Static code verification does have an exact solution, but that solution is generally not
practical, as it would generally require the enumeration of all possible test cases. As a
result, approximation is required.

Exhaustiveness

Nothing is lost in terms of exhaustiveness. The reason is that Polyspace verification
works by performing upper approximations. In other words, the computed variation
domain of a program variable is a superset of its actual variation domain. As a result,
Polyspace verifies run-time error items that require checking.

5 Approximations Used During Verification

Approximations Made by Polyspace Verification

In this section...

“Volatile Variables” on page 5-4

“Structures with Volatile Fields” on page 5-4
“Absolute Addresses” on page 5-5

“Pointer Comparison” on page 5-5

“Shared Variables” on page 5-5
“Trigonometric Functions” on page 5-6
“Unions” on page 5-6

“Constant Pointer” on page 5-7

“Variable Cast as Void Pointer” on page 5-7

Volatile Variables

Volatile variables are potentially uninitialized and their content is full range.

2 int volatile_test (void)

3{

4 volatile int tmp;

5 return(tmp); // NIV orange: the variable content is full range
[-2731;2731-1]

6 }

In the case of a global variable the content would also be full range, but the NIV check
would be green.

Structures with Volatile Fields

In this example, although only the b field is declared as volatile, in practice, a read access
to the a field is full range and orange.

2 typedef struct {
3 int a;

4 wvolatile int b;
5 } Vol _Struct;

5-4

Approximations Made by Polyspace Verification

Absolute Addresses

Both reading from, and writing to, an absolute address leads to warning checks on the
pointer dereference. An absolute address is considered as a volatile variable.

Val = *((char *) OxOF00); // NIV and IDP orange: access to an
absolute address

Pointer Comparison

Polyspace verification is a static tool verifying source code. Memory management
concerns dynamic considerations, and the characteristics of particular compilers and
targets. Polyspace verification therefore doesn't consider where objects are actually
implanted in memory

5 int *i, *j, k;

6 1 = (int *) OxOFO00;

7 J = (int *) OxOFFO;

8

9 if (1 < j) // the condition can be true or false

10 k = 12; // this line is reachable
11 else
12 k = 23; // this line is reachable too.

@
1

Its the same situation if “i” and “)” points to real variable

& one_variable;
& another_one;
f (1 <]j) // the condition can still be true or false

o ~NOo
- -

Shared Variables

At a minimum, the range of a shared variable is the union of all ranges of the variable in
the application. At a maximum, the variable is full range.

12 void p_taskl(void)

13 {

14 begin_csQ);

15 X = 0;

16 if (X) {

17 Y = X; // Verified NIV, although it should be gray

18 assert (Y == 12); // Warning assert, although it should be gray
19 3}

5 Approximations Used During Verification

20
21
22
23
24
25
26
27
28
29
30
31
32
33

end_csQ);
}
void p_task2(void)
{
begin_cs();
X = 12;
Y =X + 1; // Polyspace considers [Y==1] or [Y==13]
if (Y == 13)
Y = 14;
else
Y=X-1; // this line should be gray
end_cs(Q);
}

Trigonometric Functions

With trigonometric functions, such as sines and cosines, verification sometimes assumes
that the return value is bound between the limits of that function, regardless of the
parameter passed to it. Consider the following example, which uses acos, sin and asin

functions.

7 double res;

8

9 res = sin(3.141592654);

10 assert(res == 0.0); // Range is [-1..1]
11

12 res = acos(0.0);

13 assert(res == 0.0); // Range always in [0..pi]l
14

15 res = asin(0.0);

16 assert(res == 0.0); // Always gives [0.0]
Unions

In some situations, unions can help you construct efficient code. However, unions can
cause issues for code verification, for example:

Padding — Padding might be inserted at the end of an union.
Alignment — Members of structures within a union might have different alignments.

Endianness — Whether the most significant byte of a word could be stored at the
lowest or highest memory address.

Approximations Made by Polyspace Verification

+ Bit-order — Bits within bytes could have both different numbering and allocation to
bit fields.

These issues can cause Polyspace verification to lose precision when structure unions are
considered. In fact, these kinds of implementation are compiler dependant. Conversions
from one type a union to another will cause a loss of precision on two checks:

* Is the other field initialized? Orange NIV

* What is the content of the other field? Full range
typedef union _u {

int a;

char b[4]; } my_union;

my_union X;

X.b[0] = 1; X.b[1] = 1; X.b[2] = 1; X.b[1] = 1;

it (X.A == 0x1111)
else // both branches are reachable

Constant Pointer

To increase Polyspace precision where pointers are analyzed, replace
const int *p = Qy;

with:

#define p (&y)

Variable Cast as Void Pointer

The C language allows the use of statements that cast a variable as a void pointer.
However, Polyspace verification of these statements entails a loss of precision.

Consider the following code:

void g(void *t) {
int x;

1 typedef struct {
2 int x1;

3 } si;

4

5 sl object;

6

7

8

5 Approximations Used During Verification

5-8

9 sl *p;

11 p
12 X
13 %}

(sl Mt;
p->x1; // x should be assigned value 5 but p->x1 is full-range

15 void main(void) {
16 sl * p;

18 object.x1l = 5;

19 p = &object;

20 g((void *)p); // p cast as void pointer
21 }

On line 12, the variable X should be assigned the value 5. However, the software treats
p->x1 as full-range.

In some cases, you can avoid this loss of precision by running your verification with the
option -retype-pointer. For this example, if you specify -retype-pointer, the
software assigns the value 5 to X in the function g.

Limitations of Polyspace Verification

Limitations of Polyspace Verification

Code verification has certain limitations. The Polyspace Code Prover Limitations
document describes known limitations of the code verification process.

This document is stored as codeprover_limitations.pdf in the following folder:

MATLAB_Install\polyspace\verifier\code_prover

5-9

5-10

Examples

6 Examples

Complete Examples

In this section...

“Simple C Example” on page 6-2
“Apache Example” on page 6-2
“cxref Example” on page 6-3

“T31 Example” on page 6-3
“Dishwasherl Example” on page 6-3
“Satellite Example” on page 6-4

Simple C Example

polyspace-code-prover-nodesktop \
-prog myCproject \

-01 \

-1 /home/user/includes \

-D SUN4 -D USE_FILES \

Apache Example

Here is a script for verifying the code for Apache (after formatting). The source code is in
C and the compilation is for an Oracle® Sun™ Microsystems SPARC® processor.

Note: The use of OO0 to reduce verification time.

polyspace-code-prover-nodesktop \ \
-target sparc \
-prog Apache \
-keep-all-files \
-continue-with-red-error \
-00 \
-D PST \
-D _ _GNUC_MINOR__=6 -D SOLARIS2=270 -D USE_EXPAT \
-D NO_DL_NEEDED \
-1 sources \
-1 /usr/local/pst/include.sparc \

6-2

Complete Examples

-1 Zusr/include \
-results-dir RESULTS

cxref Example

Here is another C launch command. The compilation is for Linux. Note the escape
characters, allowing quoted strings to be used as compiler defines.

polyspace-code-prover-nodesktop \
-0S-target linux \
-prog cxref \

-00 \
-1 “pwd™ \
-1 sources \

-1 <Polyspace_Install>/include/include.linux \
-D CXREF_CPP="\""/usr/local/gcc/bin/cpp\"" \
-D PAGE="\"A4\"" \

-results-dir RESULTS

T31 Example

Another simple C launcher. There are a couple of tasks and compilation is for an m68k.

polyspace-code-prover-nodesktop \

-target m68k \

-entry-points task_callback_main,task_tcp_main,cdtask_depm_main,
task_receiver \

-to passl \

-prog T31 \

-00 \

-results-dir “pwd /RESULTS_31 \

-keep-all-files

Dishwasher1 Example

Another C example. This one is for the c-167 and has tasks protected by critical section.

polyspace-code-prover-nodesktop \
-target c-167 \

-entry-points periodic,pst_main \
-D PST -D const= -D water= \
-from scratch \

6-3

6 Examples

-to pass4 \

-critical-section-begin “critical_enter:csl™ \
-critical-section-end "critical_exit:csl™ \
-prog dishwasherl \

-1 “pwd~/sources \

-00 \

-keep-all-files \

-results-dir RESULTS

Satellite Example

A C example with tasks and critical sections.

polyspace-code-prover-nodesktop

-target c-167 \

-entry-points ctaskO,ctaskl,ctask2,ctask3, interrupts \
-02 \

-keep-all-files \

-from scratch \

-critical-section-begin "Disablelnterrupts:scl™ \
-critical-section-end "Enablelnterrupts:scl™ \
—-ignore-constant-overflows \

—-include ~“pwd~/sources/options.h \

-to pass4 \

-prog satellite \

-1 “pwd~/sources \

-results-dir RESULTS

Functions

7 Functions

7-2

pslinkfun

Manage model analysis at the command line

Syntax

pslinkfun("annotations”, "type", typeVvValue, "kind" ,kindVvValue,
Name,Value)

pslinkfun(®openresults”,systemName)

pslinkfun("settemplate®,psprjFile)
prjTemplate = pslinkfun("gettemplate®)

pslinkfun(*advancedoptions®)
pslinkfun("enablebacktomodel)
pslinkfun(“help*)
pslinkfun("metrics"®)
pslinkfun(®jobmonitor*®)
pslinkfun("stop™)

Description

pslinkfun("annotations”, "type",typeValue, "kind" ,kindVvalue,
Name,Value) adds an annotation of type typeValue and kind kindValue to the
selected block in the model. You can specify a different block using a Name,Value pair
argument. You can also add notes about a priority classification, an action status, or
other comments using Name,Value pairs.

In the generated code associated with the annotated block, Polyspace adds code
comments before and after the lines of code. Polyspace reads these comments and marks
Polyspace results of the specified kind with the annotated information.

Syntax limitations:

* You can have only one annotation per block. If a block produces both a rule violation
and an error, you can annotate only one type.

pslinkfun

+ Even though you apply annotations to individual blocks, the scope of the annotation
can be larger. The generated code from one block can overlap with another, causing
the annotation to also overlap.

For example, consider this model. The first summation block has a Polyspace
annotation, but the second does not.

However, the associated generated code adds all three inputs in one line of code.

/* polyspace:begin<RTE:OVFL:Medium:Fix>*/
annotate_y.Outl=(annotate_u. Inl+annotate_U. In2)+annotate_U.In3;
/* polyspace:end<RTE:OVFL:Medium:Fix> */

Therefore, the annotation justifies both summations.

pslinkfun("openresults”,systemName) opens the Polyspace results associated
with the model or subsystem systemName in the Polyspace environment. If analysis
results do not exist for systemName, Polyspace opens to the Project Manager perspective.

pslinkfun("settemplate”,psprjFile) sets the configuration file for new
verifications.

prjTemplate = pslinkfun("gettemplate™) returns the template configuration file
used for new analyses.

pslinkfun(®advancedoptions™) opens the advanced verification options window to
configure additional options for the current model.

pslinkfun(“enablebacktomodel ") enables the back-to-model feature of the
Simulink plug-in. If your Polyspace results do not properly link to back to the model
blocks, run this command.

pslinkfun("help™) opens the Polyspace documentation in a separate window. Use
this option for only pre-R2013b versions of MATLAB.

pslinkfun("metrics") opens the Polyspace Metrics interface.

7 Functions

pslinkfun("jobmonitor™) opens the Polyspace Job Monitor to display remote
verifications in the queue.

pslinkfun("stop™) Kkills the code analysis that is currently running. Use this option
for local analyses only.

Examples

Annotate a Block and Run a Polyspace Code Prover Verification

Use the Polyspace annotation function to annotate a block and see the annotation in the
verification results.

In the example model WhereAreTheErrors_v2, set the current block to the division block
of the 10* x // (Xx-y) subsystem. Then, add an annotation to the current block to
mark division by zero (DIV) errors as justified with the annotation.

model = “"WhereAreTheErrors v2°;

open(model)

gcb = "WhereAreTheErrors_v2/10* x // (x-y)/Divide~;

pslinkfun(“annotations”®, "type®", "RTE", "kind", "ZDV","status”, ...
"justify with annotation®,*comment”®,"verified not an error-)

In Simulink, the division block of the 10* x // (X-y) subsystem now has a Polyspace
annotation.

At the command line, generate code for the model and run a verification. After the
analysis is finished, open the result in the Polyspace environment:

slbuild(model)

pslinkrun(model)

pslinkfun("openresults”,model)

If you look at the orange division by zero error, the check is justified and includes the
status and comments from your annotation.

Add Batch Options to Default Configuration Template
Change advanced Polyspace options and set the new configuration as a template.

Load the model WhereAreTheErrors_v2 and open the advanced options window.

model = “"WhereAreTheErrors v2-°;

pslinkfun

load_system(model)
pslinkfun("advancedoptions®)

In the Distributed Computing pane, select the options Batch and Add to results
repository.

Set the configuration template for new Polyspace analyses to have these options.

pslinkfun(“settemplate”,fullfile(cd, "pslink_config”, ...
"WhereAreTheErrors_v2_config.psprj®))

View the current Polyspace template.
template = pslinkfun(“gettemplate®)

template =
C:\ModellLinkDemo\pslink_config\WhereAreTheErrors_v2_config.psprj

View Polyspace Queue and Metrics
Run a remote analysis, view the analysis in the queue, and review the metrics.

Before performing this example, check that your Polyspace configuration is set up for
remote analysis and Polyspace Metrics.

Build the model WhereAreTheErrors_v2, create a Polyspace options object, set the
verification mode, and open the advanced options window.

model = "WhereAreTheErrors_v2";
load_system(model)

slbuild(model)

opts = pslinkoptions(model);
opts.VerificationMode = "CodeProver”®;
pslinkfun(“advancedoptions™)

In the Distributed Computing pane, select the Batch and Add to results repository
options.

Run Polyspace, then Queue Manager to monitor your remote job.

pslinkrun(model ,opts)
pslinkfun("jobmonitor™)

After your job is finished, open the metrics server to see your job in the repository.

7 Functions

7-6

pslinkfun("metrics”)

Input Arguments

typeValue — type of result
"RTE" | "MISRA-C" | "MISRA-AC-AGC" | "MISRA-CPP*" | *JSF*

The type of result with which to annotate the block, specified as:

* “RTE” for run-time errors.

* “MISRA-C” for MISRA C coding rule violations (C code only).

* “MISRA-AC-AGC” for MISRA C coding rule violations (C code only).

* “MISRA-CPP” for MISRA C++ coding rule violations (C++ code only).
+ “JSF~ for JSF C++ coding rule violations (C++ code only).

Example: “type”, "MISRA-C*

kindvalue — specific check or coding rule
check acronym | rule number

The specific check or coding rule specified by the acronym of the check or the coding rule
number. For the specific input for each type of annotation, see the following table.

type Value kind Values
“RTE” Use the abbreviation associated with the type of check that you
want to annotate. For example, "UNR" — Unreachable Code.
For the list of possible checks, see: “Run-Time Check Reference”.
“MISRA-C” Use the rule number that you want to annotate. For example,

"2.2".

For the list of supported MISRA C rules and their numbers, see
“Supported MISRA C:2004 Rules”.

“MISRA-AC-AGC”~

Use the rule number that you want to annotate. For example,
"2.2".

For the list of supported MISRA AC AGC rules and their
numbers, see “Supported MISRA C:2004 Rules”.

pslinkfun

type Value kind Values
“MISRA-CPP” Use the rule number that you want to annotate. For example,
"0-1-1°-.

For the list of supported MISRA C++ rules and their numbers, see
“Supported MISRA C++ Coding Rules”.

“JSF” Use the rule number that you want to annotate. For example,
"3-.

For the list of supported JSF C++ rules and their numbers, see
“Supported JSF C++ Coding Rules”.

Example: pslinkfun(®annotations”®, "type”, "MISRA-CPP*, *kind","1-2-3%)
Data Types: char

systemName — Simulink model

system | subsystem

Simulink model specified by the system or subsystem name.

Example: pslinkfun(®openresults®, "WhereAreTheErrors v2")

psprjFile — Polyspace project file
standard Polyspace template (default) | absolute path to . psprj file

Polyspace project file specified as the absolute path to the . psprj project file. If psprjFile
is empty, Polyspace uses the standard Polyspace template file. New Polyspace projects
start with this project configuration.

Example: pslinkfun("“settemplate®, fullfile(matlabroot,
"polyspace”, "examples®, "cxx", "Bug_Finder_Example®, "Bug_Finder_Example.bf.psprj

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (*). You can specify several name and value pair arguments in any order as
Namel,Valuel, ... ,NameN,ValueN.

Example: “block”, >MyModeI\Sum”, “status”,’fix’

7-7

7 Functions

7-8

*block™ — block to be annotated
gcb (default) | block name

The block you want to annotate specified by the block name. If you do not use this option,
the block returned by the function gcb is annotated.

Example: "block®, "MyMode I\Sum*

"class" — dassification of the check

"high® | "medium® | "low"™ | "not a defect” | "unset”

Classification of the check specified as high, medium, low, not a defect, or unset.
Example: "class”, "high*”

"status”™ — action status

"undecided” | "investigate® | "fix" | "improve” | "restart with different
options” | "justify with annotation no action planned® | "other*

Action status of the check specified as undecided, investigate, fix, improve,
restart with different options, justify with annotation, no action
planned, or other.

The statuses, justify with annotation and no action planned, also mark the
result as justified.
Example: "status”, "no action planned”

*comment” — additional comments
string

Additional comments specified as a string. The comments provide more information
about why the results are justified.

Example: "comment”, "defensive code”

See Also

pslinkrun | pslinkoptions | gcb

pslinkoptions

pslinkoptions

Create options object to customize Polyspace runs from MATLAB command line

Syntax

opts pslinkoptions(codegen)
opts = pslinkoptions(model)

Description

opts = pslinkoptions(codegen) returns an options object with the configuration
options for code generated by codegen.

opts = pslinkoptions(model) returns an options object with the configuration
options for the Simulink model.

Examples

Use a Simulink model to create and edit an options objects

Load psdemo_model _link_sl and create a Polyspace options object from the model:

load_system("psdemo_model_link_sl_v27);
model_opt = pslinkoptions("“psdemo_model_link_sl_v2%)

model_opt =

ResultDir: “results_$ModelName$*®
VerificationSettings: °"PrjConfig”
OpenProjectManager: O
AddSuffixToResultDir: O
EnableAdditionalFileList: O
AdditionalFileList: {}
VerificationMode: "CodeProver*
EnablePrjConfigFile: O
PrjConfigFile: ="
InputRangeMode: "DesignMinMax*®
ParamRangeMode: “None*

7-9

7 Functions

OutputRangeMode:
ModelRefVerifDepth:
ModelRefByModelRefVerif:
CxxVerificationSettings:
CheckConfigBeforeAnalysis:

"None*

"Current model only*
0

"PrjConfig”

"OnWarn*

The model is already configured for Embedded Coder, so only the Embedded Coder

configuration options appear.

Change the results folder name option and set OpenProjectManager to true

model_opt.ResultDir = "results_vl_$ModelName$" ;

model_opt.OpenProjectManager =
model_opt =

ResultDir:
VerificationSettings:
OpenProjectManager:
AddSuffixToResultDir:
EnableAdditionalFilelList:
AdditionalFilelList:
VerificationMode:
EnablePrjConfigFile:
PrjConftigFile:
InputRangeMode:
ParamRangeMode:
OutputRangeMode:
ModelRefVerifDepth:
ModelRefByModelRefVerif:
CxxVerificationSettings:
CheckConfigBeforeAnalysis:

true

"results_vil_ $ModelName$"
"PrjConftig”

1

0

0

O

"CodeProver-

0

"DesignMinMax*®
"None*

"None*

"Current model only*
0

"PrjConftig”

"OnWarn*

Create and edit an options object for Embedded Coder at the command line

Create a Polyspace options object called new_opt with Embedded Coder parameters:

new_opt = pslinkoptions(“ec”)
new_opt =
ResultDir:
VerificationSettings:
OpenProjectManager:
AddSuffixToResultDir:

EnableAdditionalFilelList:

7-10

"results_$ModelName$*
"PrjConfig”

0

0

0

pslinkoptions

AdditionalFileList:
VerificationMode:
EnablePrjConfigFile:
PrjConfigFile:
InputRangeMode:
ParamRangeMode:
OutputRangeMode:
ModelRefVerifDepth:
ModelRefByModelRefVerif:
CxxVerificationSettings:
CheckConfigBeforeAnalysis:

O

"CodeProver-

0

"DesignMinMax*
"None*

"None*

"Current model only*
0

"PrjConfig”

"OnWarn*

Set the OpenProjectManager option to true to follow the progress in the Polyspace
interface. Also change the configuration to check for both run-time errors and MISRA C

coding rule violations:

new_opt.OpenProjectManager = true;
new_opt.VerificationSettings = "PrjConfigAndMisra“
new_opt =
ResultDir: "results_$ModelName$”
VerificationSettings: "PrjConfigAndMisra®
OpenProjectManager: 1
AddSuffixToResultDir: O
EnableAdditionalFileList: O
AdditionalFilelList: {}
VerificationMode: *CodeProver*
EnablePrjConfigFile: O
PrjConfigFile: ="
InputRangeMode: "DesignMinMax®
ParamRangeMode: “None*
OutputRangeMode: “None*
ModelRefVerifDepth: *Current model only*
Mode IRefByModelRefVerif: 0O
CxxVerificationSettings: "PrjConfig”
CheckConfigBeforeAnalysis: “OnWarn*

Create and edit an options object for Targetlink at the command line

Create a Polyspace options object called new_opt with TargetLink parameters:

new_opt = pslinkoptions(“tl~)

new_opt

7-11

7 Functions

ResultDir:
VerificationSettings:
OpenProjectManager:
AddSuffixToResultDir:
EnableAdditionalFilelList:
AdditionalFileList:
VerificationMode:
EnablePrjConfigFile:
PrjConfigFile:
InputRangeMode:
ParamRangeMode:
OutputRangeMode:
AutoStubLUT:

"results_$ModelName$*
"PrjConfig"

0

0

0

{

"CodeProver-*

0

"DesignMinMax*®

"None*

"None*®
0

Set the OpenProjectManager option to true to follow the progress in the Polyspace
interface. Also change the configuration to check for both run-time errors and MISRA C

coding rule violations:

new_opt.OpenProjectManager =
new_opt.VerificationSettings

new_opt =

ResultDir:
VerificationSettings:
OpenProjectManager:
AddSuffixToResultDir:
EnableAdditionalFilelList:
AdditionalFilelList:
VerificationMode:
EnablePrjConfigFile:
PrjConfigFile:
InputRangeMode:
ParamRangeMode:
OutputRangeMode:
AutoStubLUT:

Input Arguments

codegen — Code generator
-eC- | -tl -

7-12

true;

"PrjConfigAndMisra*

“results_$ModelName$~”
PrjConfigAndMisra
1

0

0

{

“CodeProver-

0

“DesignMinMax*
“None*

“None*

0

pslinkoptions

Code generator, specified as either "ec” for Embedded Coder® or "tl*" for TargetLink®.
Each argument creates a Polyspace options object with properties specific to that code
generator.

For a description of all configuration options and their values, see pslinkoptions
Properties.

Example: ec_opt = pslinkoptions(“ec®)

Example: tl_opt = pslinkoptions("tl*)
Data Types: char

model — Simulink model
model name

Simulink model, specified by the model name. Creates a Polyspace options object with
the configuration options of that model. If you do not set any options, the object has the
default configuration options. If a code generator has been set, the object has the default
options for that code generator.

For a description of all configuration options and their values, see pslinkoptions
Properties.

Example: model _opt = pslinkoptions("my_model*®)

Data Types: char

Output Arguments

opts — Polyspace configuration options
options object

Polyspace configuration options, returned as an options object. The object is used with
pslinkrun to run Polyspace from the MATLAB command line.

For the list of object properties, see pslinkoptions Properties.

Example: opts= pslinkoptions(“ec™)
opts.VerificationSettings = "Misra*

7-13

7 Functions

More About

pslinkoptions Properties

See Also

pslinkfun | pslinkrun

7-14

pslinkrun

pslinkrun

Run Polyspace analysis on generated code from MATLAB command line

Syntax

resultsFolder = pslinkrun

resultsFolder = pslinkrun(system)

resultsFolder = pslinkrun(system,opts)
resultsFolder = pslinkrun(system,opts,asModelRef)
Description

resultsFolder = pslinkrun on generated code from the current system and returns
the location of the results folder. It uses the analysis options associated with the current
system. The current system, or model, is the system returned by the command bdroot.

resultsFolder = pslinkrun(system) runs Polyspace on the code generated from
the model or subsystem specified by system. It uses the analysis options associated with
system.

resultsFolder = pslinkrun(system,opts) analyzes system using the analysis
options from the options object opts.

resultsFolder = pslinkrun(system,opts,asModelRef) uses asModelRef to
specify which type of generated code to analyze, standalone code or model reference code.
This option is useful when you want to analyze only a referenced model instead of an
entire model hierarchy.

Examples

Run Polyspace from the Command Line

Use a Simulink model to generate code, set configuration options, and then run an
analysis from the command line.

Load and build the model WhereAreTheErrors_v2 to generate code.

model = “"WhereAreTheErrors v2°;

7-15

7 Functions

7-16

load_system(model)
slbuild(model)

Create a Polyspace options object from the model and change the configuration to run a
Code Prover verification.

opts = pslinkoptions(model);
opts.VerificationMode = "CodeProver”®;

Run Polyspace using your options object:

results = pslinkrun(model,opts)

The results are saved to the results_WhereAreTheErrors_v2 folder, listed in the
results variable.

Build and Analyze Referenced Model Code from the Command Line

Use a Simulink model to generate reference code, set configuration options, and then run
an analysis from the command line.

Load and build the model WhereAreTheErrors_v2 to generate code as if it is referenced
by another model:

model = "WhereAreTheErrors_v2";
load_system(model)
slbuild(model, "ModellReferenceRTWTargetOnly™)

Create a Polyspace options object from the model and change the configuration to run a
Code Prover verification.

opts = pslinkoptions(model);
opts.VerificationMode = "CodeProver”;

Run Polyspace using your options object:

results = pslinkrun(model,opts,true)

The results are saved to the results_mr_WhereAreTheErrors_v2 folder, listed in the
results variable.

Input Arguments

system — Model or system
bdroot (default) | model or system name

pslinkrun

Model or system that you want to analyze, specified as a string, with the model or system
name in single quotes. The default value is the system returned by bdroot.

Example: resultsFolder = pslinkrun(®demo®) where demo is the name of a model.
Data Types: char

opts — Analysis options
options associated with system (default) | Polyspace options object

Analysis options for the analysis, specified as an options object or the options already
associated with the model or system. The function pslinkoptions creates an options
object. You can customize the options object by changing the

Example: pslinkrun("demo®, opts_demo) where demo is the name of a model and
opts_demo is an options object.

asMode IRef — Indicator for model reference analysis
false (default) | true

Indicator for model reference analysis, specified as true or false.

+ If asModelRef is false (default), Polyspace analyzes code generated as standalone
code. This option is equivalent to choosing Verify Code Generated For > Model in
the Simulink Polyspace options.

+ If asModelRef is true, Polyspace analyzes code generated as model referenced code.
This option is equivalent to choosing Verify Code Generated For > Referenced
Model in the Simulink Polyspace options.

Data Types: logical

Output Arguments

resultsFolder — Variable for location of the results folder
string

Variable for location of the results folder, specified as a string. The default value of this
variable is results_$ModelIName$. You can change this value in the configuration
options using pslinkoptions.

Data Types: char

7-17

7 Functions

See Also

pslinkfun | pslinkoptions

7-18

polyspaceCodeProver

polyspaceCodeProver

Run Polyspace Code Prover verification from MATLAB

Syntax

polyspaceCodeProver

polyspaceCodeProver(projectFile)
polyspaceCodeProver(resultsFile)
polyspaceCodeProver("-results-dir" ,resultsFolder)

polyspaceCodeProver("-help*®)

polyspaceCodeProver (" -sources”,sourceFiles)
polyspaceCodeProver (" -sources”,sourceFiles,Name,Value)

Description
polyspaceCodeProver opens Polyspace Code Prover.

polyspaceCodeProver(projectFile) opens a Polyspace project file in Polyspace
Code Prover.

polyspaceCodeProver(resultsFile) opens a Polyspace results file in Polyspace
Code Prover.

polyspaceCodeProver("-results-dir" ,resultsFolder) opens a Polyspace
results file from resultsFolder in Polyspace Code Prover.

polyspaceCodeProver (" -help®) displays all options that can be supplied to the
polyspaceCodeProver command to run a Polyspace Code Prover verification.

polyspaceCodeProver("-sources”,sourceFiles) runs a Polyspace Code Prover
verification on the source files specified in sourceFiles.

polyspaceCodeProver (" -sources” ,sourceFiles,Name,Value) runs a Polyspace
Code Prover verification on the source files with additional options specified by one or
more Name,Value pair arguments.

7-19

7 Functions

7-20

Examples

Open Polyspace Projects from MATLAB

This example shows how to open a Polyspace project file with extension . psprj from
MATLAB. In this example, you open the project file Demo_C.psprj from the folder
Matlab Install\polyspace\examples\cxx\Demo_C.

Assign the full path to the project file to a MATLAB variable prjFile.

prjFile = fullfile(matlabroot, “polyspace”, “examples®, "cxx”",

Demo_C", "Demo_C.psprj-);
Use prjFile to open the project.
polyspaceCodeProver(prjFile)
Open Polyspace Results from MATLAB

This example shows how to open a Polyspace results file from MATLAB. In this example,
you open the results file from the folder Matlab Install\polyspace\examples\cxx
\Demo_C\Module_1\Result_1.

Assign the full path to the folder to a MATLAB variable resFolder.

resFolder = fullfile(matlabroot, “polyspace®, “examples®,
"cxx", "Demo_C®, “"Module_1", "Result_1%);

Use resFolder to open the results.
polyspaceCodeProver("-results-dir”,resFolder)
Run Polyspace Verification from MATLAB

This example shows how to run a Polyspace verification on a single source file from the
MATLAB command-line. For this example:

+ Save a C source file, source.c, in the folder C:\Polyspace_Sources.
* Save an include file in the folder C:\Polyspace_Includes.

Run the following command on the MATLAB command line.

polyspaceCodeProver (" -sources”, "C:\Polyspace_Sources\source.c”,

polyspaceCodeProver

"—1","C:\Polyspace_Includes”,
"-results-dir®, "C:\Polyspace_Results®)

Polyspace runs on the file C:\Polyspace_Sources\source.c and stores the result in
C:\Polyspace Results.

To view the results from the MATLAB command line, enter:

polyspaceCodeProver("-results-dir®,"C:\")
Run Polyspace Verification with Coding Rules Checking

This example shows how to run a Polyspace verification with additional options. You
can specify as many additional options as you want as “Name-Value Pair Arguments” on
page 7-23. Here you specify:

+ Checking of MISRA C coding rules using the option -misra2. For more information,
see “Check MISRA C:2004”.

* Excluding header files from coding rules checking using the option —includes-to-
ignore. For more information, see “Files and folders to ignore (C)”.

* Automatic generation of main function using the option -main-generator. For more
information, see “Verify module (C)”.

Assign the source file path to a MATLAB variable sourceFileName.

sourceFileName = fullfile(matlabroot, “polyspace”,...
"examples®™, "cxx", "Demo_C_Single-File","sources”, "example.c™)

Assign the include file path to a MATLAB variable includeFi leName.

includeFileName = fullfile(matlabroot, “polyspace”,...
“examples®, - "Demo_C_Single-File", "sources”, "include.h")

cxx",
Assign the results folder path to a MATLAB variable resFolder.
resFolder = fullfile("C:\", "Polyspace_Results®)

Run Polyspace Code Prover verification with additional options -misra2, -includes-
to-ignore and -main-generator.

polyspaceCodeProver("-sources”,sourceFileName, . . .
“-17,includeFileName,
"-results-dir”,resFolder, "-misra2”, "required-rules®, ...
"—includes-to-ignore®, "all-headers”, "-main-generator"®)

7-21

7 Functions

7-22

Open the results file.
polyspaceCodeProver("-results-dir®,resFolder)

. “Specify Options from MATLAB Command Line”

Input Arguments

projectFile — Name of .psprj file
string

Name of project file with extension .psprj, specified as a string.

If the file is not in the current folder, projectFile must include a full or relative path.
Use pwd to identify the current folder and cd to change the current folder.
Example: "C:\Polyspace_Projects\myProject.psprj”

resultsFile — Name of . pscp file
string

Name of results file with extension . pscp, specified as a string.

If the file is not in the current folder, resultsFile must include a full or relative path.
Use pwd to identify the current folder and cd to change the current folder.
Example: "myResults.psbf”

resultsFolder — Name of result folder
string

Name of result folder, specified as a string. The folder must contain the results file with
extension . psbf. If the results file resides in a subfolder of the specified folder, this
command does not open the results file.

If the folder is not in the current folder, resultsFolder must include a full or relative
path. Use pwd to identify the current folder and cd to change the current folder.

Example: "C:\Polyspace\Results\~

sourceFiles — Comma-separated names of . c or .cpp files
string

polyspaceCodeProver

Comma-separated source file names with extension .c or .cpp, specified as a single
string.

If the files are not in the current folder, sourceFiles must include a full or relative
path. Use pwd to identify the current folder and cd to change the current folder.
Example: "myFile.c”, "C:\mySources\myFilel.c,C:\mySources\myFile2.c"

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (*). You can specify several name and value pair arguments in any order as
Namel,Valuel, ... ,NameN,ValueN.

Example: "-0S-target”, "Linux”,"-dialect”, "gnu4.6" specifies that the source
code is intended for the Linux operating system and contains non-ANSI C syntax for the
GCC 4.6 dialect.

+ For options that can also be set from the user interface, see the Command-Line
Information section in:
+ “Analysis Options for C Code”
+ “Analysis Options for C++ Code”

+ For options that cannot be set from the user interface, see the Polyspace Analysis
Options section in “Command-Line Verification”.

7-23

7 Functions

7-24

polyspaceConfigure

Create Polyspace project from your build system

Syntax
polyspaceConfigure buildCommand

polyspaceConfigure buildCommand -option value

Description

polyspaceConfigure buildCommand traces your build system and creates a
Polyspace project with information gathered from your build system.

polyspaceConfigure buildCommand -option value traces your build system and
uses the flag —option value to modify the default operation of polyspaceConfigure.

Examples

Create Polyspace Project from Makefile

This example shows how to create a Polyspace project if you use the command make
targetName buildOptions to build your source code.

Create a Polyspace project specifying a unique project name. Use the -B option with
make so that the all prerequisite targets in the makefile are remade.

polyspaceConfigure -prog myProject ...
make -B targetName buildOptions

Open the Polyspace project in the Project Browser.
polyspaceCodeProver("myProject._psprj*)
Run Command-Line Polyspace Analysis from Makefile

This example shows how to run Polyspace analysis if you use the command make
targetName buildOptions to build your source code. In this example, you use

polyspaceConfigure

polyspaceConfigure to trace your build system but do not create a Polyspace project.
Instead you create an options file that you can use to run Polyspace analysis from
command-line.

Create a Polyspace options file specifying the —output-options-file command. Use
the -B option with make so that all prerequisite targets in the makefile are remade.

polyspaceConfigure -no-project -output-options-file ...
myOptions make -B targetName buildOptions

Use the options file that you created to run a Polyspace analysis at the command line:

polyspaceCodeProver -options-file myOptions
Trace Incremental Makefile Builds

This example shows how to trace incremental makefile builds to keep your Polyspace
project updated. If you use this approach, polyspaceConfigure does not have to trace
the entire makefile every time you make a change to it.

Create a Polyspace project from your makefile using polyspaceConfigure. For this
first project creation:

+ Use the -B option with make so that all prerequisite targets in the makefile are
remade.

+ Use the —incremental option so that the build trace information is saved.

polyspaceConfigure -prog myProject ...
—-incremental make -B targetName buildOptions

After you add, remove or change source files, to keep your Polyspace project updated,
rerun polyspaceConfigure with the same options. Do not use the -B option with make.

polyspaceConfigure -prog myProject ...
—-incremental make targetName buildOptions

The polyspaceConfigure function uses the previous build trace information to
incrementally add or remove the updated files to your Polyspace project. It does not trace
the entire makefile.

. “Create Projects Automatically from Your Build System”

7-25

7 Functions

Input Arguments

bui ldCommand — Command for building source code

build command

Build command specified exactly as you use to build your source code.

Example: make -B

-option value — Options for changing default operation of polyspaceConfigure
single option starting with -, followed by argument | multiple space-separated option-

argument pairs

Option

Argument

Description

-author

Author name

Name of project author.

Example: —author jsmith

-build-trace Path and file Location and name of file where build
name information is stored. The default is ./
polyspace_configure build_trace.log.
Example: -build-trace ../build_info/
trace.log
-cache-all-files None Option to cache all files read by
polyspaceConfigure including binaries
-cache-path Path Location of folder where cache information is
stored.
Example: -cache-path ../cache
—-compiler-configuration|Path and file Location and name of compiler configuration file.
name

7-26

The file must be in a specific format. For
guidance, see the existing configuration files

in matlabroot\polyspace\configure\
compiler_configuration\. For information
on the contents of the file, see “Your Compiler Is
Not Supported”.

polyspaceConfigure

Option

Argument

Description

Example: —-compiler-configuration
myCompiler._xml

-debug

None

Option used by MathWorks technical support

-help

None

Option to display the full list of
polyspaceConfigure commands

-incremental

None

Option to save build trace information for reuse
in incremental builds

-no-build

None

Option to create a Polyspace project using
previously saved build trace information.

To use this option, you must have the build
trace information saved from an earlier run of
polyspaceConfigure with the -no-project
option.

If you use this option, you do not need to specify
the buildCommand argument.

-no-cache

None

Option to specify that a cache of your files must
not be created.

-no-project

None

Option to trace your build system without
creating a Polyspace project and save the build
trace information.

Use this option to save your build

trace information for a later run of
polyspaceConfigure with the -no-build
option.

-output-dump-file

None

Option to save build trace information in a text
file.

-output-options-file

None

Option to create a Polyspace analysis options
file. Use this file for command-line analysis
using polyspaceCodeProver.

7-27

7 Functions

Option

Argument

Description

-output-project

Path

Location for saving Polyspace project. The
default is the current folder.

Example: —-output-project ../
myProjects/

—prog

Project name

Name of project. The default is
polyspace.psprj.

Example: —output-project myProject

More About

. “Requirements for Project Creation from Build Systems”

. “Your Compiler Is Not Supported”

7-28

polyspaceJobsManager

polyspaceJobsManager

Manage Polyspace jobs on MDCS cluster

Syntax

polyspaceJobsManager (" listjobs™)
polyspaceJobsManager(“cancel ", -job" , jobNumber)
polyspaceJobsManager(“remove”, "-job", jobNumber)
polyspaceJobsManager(“getlog”, "-job", jobNumber)
polyspaceJobsManager(“wait","-job", jobNumber)
polyspaceJobsManager("promote”, "-job", jobNumber)
polyspaceJobsManager(“demote”,"-job", jobNumber)
polyspaceJobsManager(“downlload”, "-job", jobNumber, "-results-folder",
resultsFolder)

polyspaceJobsManager(____ ,"-scheduler®,scheduler)

Description
polyspaceJobsManager (" listjobs™) lists all Polyspace jobs in your cluster.

polyspaceJobsManager(“cancel ", "-job", jobNumber) cancels the specified job.
The job appears in your queue as cancelled.

polyspaceJobsManager("remove®, "-job*, JjobNumber) removes the specified job
from your cluster.

polyspaceJobsManager("getlog”, "-job", jobNumber) displays the log for the
specified job.

polyspaceJobsManager("wait”®, "-job", JjobNumber) pauses until the specified job
is done.

polyspaceJobsManager("promote”, "-job", jobNumber) moves the specified job up
in the MATLAB job scheduler queue.

polyspaceJobsManager(“"demote”, "-job", jobNumber) moves the specified job
down in the MATLAB job scheduler queue.

7-29

7 Functions

polyspaceJobsManager(“downlload®, "-job", jobNumber, "-results-folder",
resultsFolder) downloads the results from the specified job to resultsFolder.

polyspaceJobsManager (, "-scheduler”,scheduler) performs the specified
action on the job scheduler specified. If you do not specify a server with any of the
previous syntaxes, Polyspace uses the server stored in your Polyspace preferences.

Examples

Manipulate Two Jobs in the Cluster

In this example, use a MJS scheduler to run Polyspace remotely and monitor your jobs
through the queue.

Before performing this example, set up an MJS and Polyspace Metrics. This example
uses the myMJS@myCompany . com scheduler. When you perform this example, replace
this scheduler with your own cluster name.

Set up your source files.

mkdir "C:\psdemo\src”

demo = fullfile(matlabroot, "polyspace”, "examples”, "cxx", ...
"Demo_C*", "sources®);

copyfile(demo, "C:\psdemo\src*)

Submit two jobs to your scheduler.

polyspaceCodeProver -batch -scheduler myMJS@myCompany.com

-sources C:\psdemo\src*.c"

-results-dir "C:\psdemo\resl”
polyspaceCodeProver -batch -scheduler myMJS@myCompany.com

-sources "C:\psdemo\src\main.c"

-results-dir "C:\psdemo\res2”

-add-to-results-repository
polyspaceJobsManager (" listjobs®, "-scheduler®, "myMJS@myCompany.com™)

ID AUTHOR APPLICATION LOCAL_RESULTS_DIR WORKER STATUS DATE LANG CLUSTER_MODE

19 user Polyspace C:\psdemo\resl queued Wed Mar 16 16:48:38 EST 2014 C Batch
20 user Polyspace C:\psdemo\res2 queued Wed Mar 16 16:48:38 EST 2014 C Batch

If your jobs have not started running, promote the second job to run before the first job.

7-30

polyspaceJobsManager

polyspaceJobsManager (“promote”,"-job","20", "-scheduler”, . ..
"myMJS@myCompany .com*®)

Job 20 starts running before job 19.

Cancel job 19.
polyspaceJobsManager(“cancel”,"-job","19","-scheduler”, ...
"myMJS@myCompany .com™)
polyspaceJobsManager (" listjobs”, "-scheduler®, "myMJS@myCompany.com™)
ID AUTHOR APPLICATION LOCAL_RESULTS_DIR WORKER STATUS DATE LANG CLUSTER_MODE

19 user Polyspace C:\psdemo\resl cancelled Wed Mar 16 16:48:38 EST 2014 C Batch
20 user Polyspace C:\psdemo\res2 running Wed Mar 16 16:48:38 EST 2014 C Batch

Remove job 19.

polyspaceJobsManager(“remove®,"-job","19", "-scheduler®, . ..
"myMJS@myCompany .com*®)
polyspaceJobsManager (" listjobs”, "-scheduler®, "myMJS@myCompany .com®)
ID AUTHOR APPLICATION LOCAL_RESULTS DIR WORKER STATUS DATE LANG CLUSTER_MODE
20 user Polyspace C:\psdemo\res2 completed Wed Mar 16 16:48:38 EST 2014 C Batch
Get the log for job 20.

polyspaceJobsManager(“getlog”,"-job", 20", "-scheduler”, ...
"myMJS@myCompany .com™)

Download the information from job 20.

polyspaceJobsManager(“download®,"-job","20", "-results-folder",
"C:\psdemo\res3-, "-scheduler”, "myCluster™)

Input Arguments

jobNumber — Queued job number
string

Number of the queued job that you want to manage, specified as a string in single quotes.

Example: "-job*®,"10"

7-31

7 Functions

7-32

resultsFolder — Path to results folder
string

Path to results folder specified as a string in single quotes. This folder stores the
downloaded results files.

Example: "-results-folder”, "C:\psdemo\myresults”

scheduler — job scheduler
head node of your MDCS cluster | job scheduler name | cluster profile

Job scheduler for remote verifications specified as one of the following:

* Name of the computer that hosts the head node of your MDCS cluster (NodeHost).
+ Name of the MJS on the head node host (M\USName@NodeHost).
+ Name of a MATLAB cluster profile (ClusterProfile).

Example: "-scheduler®, "myscheduler@mycompany.com®

More About

. “Clusters and Cluster Profiles”

. “Manage Remote Analyses at the Command Line”

See Also

polyspaceCodeProver

PolyspaceAnnotation

PolyspaceAnnotation

Annotate Simulink blocks with known Polyspace results

Compaitibility

PolyspaceAnnotation will be removed in a future release. Use
“pslinkfun("annotations”, ...)” instead.

Syntax

PolyspaceAnnotation("type”,typeValue, "kind" ,kindvValue,Name,Value)

Description

PolyspaceAnnotation("type” ,typeValue, "kind" ,kindvValue,Name,Value)adds
an annotation of type typeValue and kind kindValue to the currently selected block in
the model. You can also specify a different block using a Name,Value pair argument. You
can also add notes about a priority classification, an action status, or other comments
using Name,Value pairs.

In the generated code associated with the annotated block, code comments are added
before and after the lines of code. Polyspace reads these comments and marks Polyspace
results of the specified kind with the annotated information.

When you add annotations, you can identify known errors and coding rule violations to
focus on new results.

Examples

Annotate a Block and Run a Polyspace Code Prover Verification

Use the Polyspace annotation function to annotate a block and see the annotation in the
verification results.

7-33

7 Functions

7-34

At the MATLAB command line, load and open the example model
WhereAreTheErrors_v2:

open(WhereAreTheErrors_v2)
Set the current block to the division block of the 10* x // (X-y) subsystem:

gcb = "WhereAreTheErrors_v2/10* x // (x-y)/Divide~;

Add an annotation to the current block to mark division by zero (DIV) errors as justified
with the annotation.

PolyspaceAnnotation(“type®,"RTE","kind","ZDV", "status”, . ..
"justify with annotation®,*comment”,*verified not an error-)

In Simulink, the division block of the 10* x // (X-y) subsystem now has a Polyspace
annotation.

Back at the MATLAB command line, generate code for the model:
slbuild("WhereAreTheErrors_v2")

Run a Polyspace Code Prover verification on your model:
pslinkrun(*WhereAreTheErrors_v2©)

After the analysis has finished, open the result in the Polyspace environment:
PolySpaceViewer("WhereAreTheErrors_v2")

If you look at orange division by zero error, the check is justified and includes the status
and comments from your annotation.

Annotate a Block and Run a Polyspace Bug Finder Analysis

Use the Polyspace annotation function to annotate a block and see the annotation in the
analysis results.

At the MATLAB command line, load and open the example model
WhereAreTheErrors_v2:

WhereAreTheErrors_v2

PolyspaceAnnotation

Add an annotation to the switch block to annotate violations to MISRA C rule 13.7. Also,
add to the annotation a comment, a classification, and a status.

PolyspaceAnnotation("type”, "Misra-C*, “kind®, "13.7","block", ...
"WhereAreTheErrors_v2/Switchl®, "status”, "improve”, "comment”, "look into later");

In the WhereAreTheErrors_v2 model in Simulink, you can see a Polyspace annotation
added to the switch block.

At the MATLAB command line, generate code for the model:
slbuild("WhereAreTheErrors_v2%)

Run an analysis on your model:

pslinkrun("WhereAreTheErrors_v2%)

After the analysis is finished, open the results in the Polyspace environment:
PolySpaceViewer("WhereAreTheErrors v2©)

Results 10-14 are MISRA C 13.7 rule violations. The annotation information that you
added to the switch block appears in these four results, because all four results are from
the switch block.

Input Arguments

typeValue — type of result
"RTE" | "MISRA-C*® | "MISRA-CPP*" | "JSF*

The type of result with which to annotate the block, specified as:

* “RTE” for run-time errors.

* “MISRA-C” for MISRA C coding rule violations (C code only).

* “MISRA-CPP” for MISRA C++ coding rule violations (C++ code only).
+ “JSF” for JSF C++ coding rule violations (C++ code only).

Example: “type”, "MISRA-C*

kindValue — specific check or coding rule
check acronym | rule number

7-35

7 Functions

7-36

The specific check or coding rule specified by the acronym of the check or the coding rule
number. For the specific input for each type of annotation, see the following table.

Type Value Kind Values

“RTE” Use the abbreviation associated with the type of check that you
want to annotate. For example, *UNR" — Unreachable Code.
For the list of possible checks see: “Run-Time Check Reference”.

“MISRA-C” Use the rule number that you want to annotate. For example,

"2.2".

For the list of supported MISRA C rules and their numbers, see
“Supported MISRA C:2004 Rules”.

“MISRA-CPP”

Use the rule number that you want to annotate. For example,
"0-1-1-.

For the list of supported MISRA C++ rules and their numbers, see
“Supported MISRA C++ Coding Rules”.

“JSF”

Use the rule number that you want to annotate. For example,
"3".

For the list of supported JSF C++ rules and their numbers, see
“Supported JSF C++ Coding Rules”.

Example: PolyspaceAnnotation("type®, "MISRA-CPP", "kind","1-2-3%)

Data Types: char

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (* 7). You can specify several name and value pair arguments in any order as
Namel,Valuel, ... ,NameN,ValueN.

Example: ‘block’,MyModel\Sum’, ‘status’,’fix’

"block" — block to be annotated
gcb (default) | block name

PolyspaceAnnotation

Block to be annotated specified by the block name. If you do not use this option, the block
returned by the function gcb is annotated.

Example: "block®, "MyMode I\Sum*

"class" — classification of the check

"high® | "medium® | "low" | "not a defect” | "unset”

Classification of the check specified as high, medium, low, not a defect, or unset.
Example: "class”, "high*®

"status” — action status

"undecided” | "investigate® | "fix" | "improve” | "restart with different
options® | "justify with annotation® | "no action planned® | "other*

Action status of the check specified as undecided, investigate, fix, improve,
restart with different options, justify with annotation, no action
planned, or other.

The statuses, justify with annotation and nho action planned, also mark the
result as justified.

Example: "status”, "no action planned”

*comment® — additional comments
string

Additional comments specified as a string. The comments provide more information
about why the results are justified.

Example: "comment” , "defensive code”

Limitations

* You can have only one annotation per block. If a block produces both a rule violation
and an error, only one type can be annotation.

+ Even though you apply annotations to individual blocks, the scope of the annotation
may be larger. The generated code from one block can overlap with another causing
the annotation to also overlap.

For example, consider this model and its associated generated code.

7-37

7 Functions

In2 In3
/*
* polyspace:begin<RTE:OVFL:Medium:Fix>
*/

annotate_y.Outl = (annotate_u.Inl + annotate_U.In2) + annotate_U.In3;
/* polyspace:end<RTE:OVFL:Medium:Fix> */

The first summation block has a Polyspace annotation, but the second does not.
However, the associated generated code adds all three inputs in one line of code.
Therefore, the annotation justifies both summations

See Also

pslinkoptions | pslinkrun | PolySpaceViewer | gcb

7-38

PolySpaceViewer

PolySpaceViewer

Open analysis results in the Polyspace environment

Compaitibility

PolySpaceViewer will be removed in a future release. Use
“pslinkfun("openresults”, .. .)” instead.

Syntax

PolySpaceViewer (system)

Description

PolySpaceViewer (system) opens the Polyspace results associated with the model
or subsystem system in the Polyspace environment. If system has not been analyzed,
Polyspace opens to the Project Manager perspective.

Examples

Open Results in the Polyspace environment from the Command Line

Use the preconfigured model WhereAreTheErrors_v2 to run a Polyspace analysis and
open the results in the Polyspace environment.

Load the model WhereAreTheErrors_v2:

load_system("WhereAreTheErrors_v2%)

Open the Polyspace Viewer:

PolySpaceViewer("WhereAreTheErrors_v2®)

The Polyspace environment opens to the Project Manager page because the model does
not yet have Polyspace results.

7-39

7 Functions

7-40

Build the model to generate C code:

slbuild("WhereAreTheErrors_v2");

Create a Polyspace options object to set the configuration options:

config = pslinkoptions(“WhereAreTheErrors_v2")

config =

ResultDir:
VerificationSettings:
OpenProjectManager:
AddSuffixToResultDir:
EnableAdditionalFileList:
AdditionalFileList:
InputRangeMode:
ParamRangeMode:
OutputRangeMode:
VerificationMode:
ModelRefVerifDepth:
ModelRefByModelRefVerif:
CxxVerificationSettings:

Change the analysis options to also check for MISRA coding rule violations:

config.VerificationSettings =

Run Polyspace on WhereAreTheErrors_v2 using the configuration options object that

you created:

"results_$ModelName$*
"PrjConfig-

0

0

0

{O0x1 cell}
"DesignMinMax*®
"None*

"None*

"CodeProver-
"Current model only*
0

"PrjConfig-

"PrjConfigAndMisra”;

pslinkrun("WhereAreTheErrors_v2®, config);

Open the results in the Polyspace environment:

PolySpaceViewer ("WhereAreTheErrors_v2%);

The analysis results of WhereAreTheErrors_v2 appear in the Polyspace Results

Manager.

Input Arguments

system — Simulink model
system | subsystem

PolySpaceViewer

Simulink model specified by the system or subsystem name.

Example: PolySpaceViewer (“myModel ”)

See Also

pslinkoptions | pslinkrun | PolyspaceAnnotation

7-41

7 Functions

pslinkoptions Properties

Properties for the pslinkoptions object

Before running Polyspace from the command-line, use these properties to customize your
analysis.

Analysis Configuration

VerificationSettings — Coding rule and configuration settings for C code
"PrjConfig"® (default) | "PrjConfigAndMisraAGC® | "PrjConfigAndMisra® |
"PrjConfigAndMisraC2012® | "MisraAGC" | "Misra" | "MisraC2012*

Coding rule and configuration settings for C code specified as:

* "PrjConfig” — Use all options from the project configuration.

* "PrjConfigAndMisraAGC" — Use all options from the project configuration and
enable MISRA AC AGC rule checking.

* "PrjConfigAndMisra® — Use all options from the project configuration and enable
MISRA C:2004 rule checking.

* "PrjConfigAndMisraC2012" — Use all options from the project configuration and
enable MISRA C:2012 guideline checking.

* "MisraAGC" — Enable MISRA AC AGC rule checking. This option runs only
compilation and rule checking.

* "Misra® — Enable MISRA C:2004 rule checking. This option runs only compilation
and rule checking.

* "MisraC2012" — Enable MISRA C:2012 rule checking. This option runs only
compilation and guideline checking.

Example: opt.VerificationSettings = "PrjConfigAndMisraC2012*

VerificationMode — Polyspace mode
"CodeProver”® (default) | "BugFinder-~

Polyspace mode specified as "BugFinder”, for a Bug Finder analysis, or "CodeProver",
for a Code Prover verification.

7-42

pslinkoptions Properties

Example: opt.VerificationMode = “BugFinder”;

EnablePrjConfigFile — Allow a custom configuration file
false (default) | true

Allows a custom configuration file instead of the default configuration specified as true or
false. Use the PrjConfigFile option to specify the configuration file.
Example: opt.EnablePrjConfigFile = true;

PrjConfigFile — Custom configuration file
" " (default) | full path to a .prprj file

Custom configuration file to use instead of the default configuration specified by the full
path to a .psprj file. Use the EnablePrjConfigFile option to use this configuration file
during your analysis.

Example: opt.PrjConfigFile = "C:\Polyspace\config.psprj"”;

CheckConfigBeforeAnalysis — Configuration check before analysis
"OnWarn® (default) | "OnHalt" | "OFF"

This property sets the level of configuration checking done before the verification starts.
The configuration check before analysis is specified as:

+ "OFF" — Checks only for errors. Stops if errors are found.
+ "OnWarn® — Stops for errors. Displays a message for warnings.

+ "OnHalt" — Stops for errors and warnings.

Example: opt.CheckConfigBeforeAnalysis = "OnHalt";

Results

ResultDir — Results folder name and location
"{"C:\Polyspace_Results\results_$ModelName$" (default) | folder name | folder
path

Results folder name and location specified as the local folder name or the folder path.
This folder is where Polyspace writes the analysis results. This folder name can be

7-43

7 Functions

7-44

either an absolute path or a path relative to the current folder. The text $Mode IName$ is
replaced with the name of the original model.

Example: opt.ResultDir = "\results vl $ModelName$";

AddSuffixToResultDir — Add unique number to the results folder name
false (default) | true

Add unique number to the results folder name specified as true or false. If true, a unique
number i1s added to the end of every new results. Using this option helps you avoid
overwriting the previous results folders.

Example: opt.AddSuffixToResultDir = true;

OpenProjectManager — Open the Polyspace environment
false (default) | true

Open the Polyspace environment to monitor the progress of the analysis, specified as
true or false. Afterward, you can switch to the Results Manager perspective to review the
results.

Example: opt.OpenProjectManager = true;

Additional Files

EnableAdditionalFileList — Allow an additional file list
false (default) | true

Allow an additional file list to be analyzed, specified as true or false. Use with the
AdditionalFileList option.

Example: opt.EnableAdditionalFileList = true;

AdditionalFileList — List of additional files to be analyzed
{O0x1 cell} (default) | cell array of files

List of additional files to be analyzed specified as a cell array of files. Use with the
EnableAdditionalFileList option to add these files to the analysis.

Example: opt.AdditionalFileList = {"sources\filel.c", "sources
\file2.c"};

Data Types: cell

pslinkoptions Properties

Data Ranges

InputRangeMode — Enable design range information
"DesignMinMax” (default) | "Ful IRange*

Enable design range information specified as "DesignMinMax”, to use data ranges
defined in blocks and workspaces, or "Ful IRange”, to treat inputs as full-range values.

Example: opt. InputRangeMode = “FullRange-;

ParamRangeMode — Enable constant parameter values
"None* (default) | "DesignMinMax*®

Enable constant parameter values, specified as "None", to use constant parameters
values specified in the code, or "DesignMinMax” to use a range defined in blocks and
workspaces.

Example: opt.ParamRangeMode = “DesignMinMax”;

OutputRangeMode — Enable output assertions
"None* (default) | "DesignMinMax*®

Enable output assertions specified by "None*, to not use assertions, or "DesignMinMax*”
to apply assertions to outputs using a range defined in blocks and workspace.

Example: opt.ParamRangeMode = "DesignMinMax”;

Embedded Coder Only

ModelRefVerifDepth — Depth of verification
"Current model only"® (default) | 1% | "2% | *3" | "All"

Depth of verification specified by the model reference level to which you want to analyze.

Only for Embedded Coder
Example: opt.ModelRefVerifDepth = "3%;

Mode IRefByMode IRefVerif — Model reference analysis mode
false (default) | true

Model reference analysis mode specified as False to verify reference models within the
model hierarchy, or true to verify referenced models individually.

7-45

7 Functions

7-46

Only for Embedded Coder
Example: opt-ModelRefByModelRefVerif = true;
CxxVerificationSettings — Coding rule and configuration settings for C++ code

"PrjConfig” (default) | "PrjConfigAndMisraCxx” | "PrjConfigAndJSF" |
"MisraCxx" | "JSF*"

Coding rule and configuration settings for C++ code specified as:

* "PrjConfig” — Inherit all options from project configuration and run complete
analysis.

* "PrjConfigAndMisraCxx”® — Inherit all options from project configuration, enable
MISRA C++ rule checking, and run complete analysis.

* "PrjConfigAndJSF" — Inherit all options from project configuration, enable JSF rule
checking, and run complete analysis.

+ "MisraCxx" — Enable MISRA C++ rule checking, and run compilation phase only.

* "JSF" — Enable JSF rule checking, and run compilation phase only.

Only for Embedded Coder

Example: opt.CxxVerificationSettings = "MisraCxx";

Targetlink Only

AutoStubLUT — Lookup Table code usage
false (default) | true

Lookup Table code usage specified as true, to use Lookup Table code during the
analysis, or False, to not.

Only for TargetLink
Example: opts.AutoStubLUT = true;

See Also

pslinkoptions | pslinkrun

